
Quantum Information Processing (2022) 21:30
https://doi.org/10.1007/s11128-021-03391-8

Solving Burgers’ equation with quantum computing

Furkan Oz1 · Rohit K. S. S. Vuppala1 · Kursat Kara1 · Frank Gaitan2

Received: 5 July 2021 / Accepted: 14 December 2021 / Published online: 31 December 2021
© The Author(s) 2021

Abstract
Computational fluid dynamics (CFD) simulations are a vital part of the design pro-
cess in the aerospace industry. Although reliable CFD results can be obtained with
turbulence models, direct numerical simulation of complex bodies in three spatial
dimensions (3D) is impracticable due to the massive amount of computational ele-
ments. For instance, a 3D direct numerical simulation of a turbulent boundary-layer
over the wing of a commercial jetliner that resolves all relevant length scales using a
serial CFD solver on amodern digital computer would take approximately 750million
years or roughly 20% of the earth’s age. Over the past 25 years, quantum computers
have become the object of great interest worldwide as powerful quantum algorithms
have been constructed for several important, computationally challenging problems
that provide enormous speed-up over the best-known classical algorithms. In this
paper, we adapt a recently introduced quantum algorithm for partial differential equa-
tions to Burgers’ equation and develop a quantum CFD solver that determines its
solutions. We used our quantum CFD solver to verify the quantum Burgers’ equation
algorithm to find the flow solution when a shockwave is and is not present. The quan-
tum simulation results were compared to: (i) an exact analytical solution for a flow
without a shockwave; and (ii) the results of a classical CFD solver for flows with and
without a shockwave. Excellent agreement was found in both cases, and the error of
the quantum CFD solver was comparable to that of the classical CFD solver.

Keywords Quantum algorithms · Computational fluid dynamics · Fluid mechanics ·
Burgers’ equation

B Kursat Kara
kursat.kara@okstate.edu

1 School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK
74078, USA

2 Laboratory for Physical Sciences, 8050 Greenmead Dr., College Park, MD 20740, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03391-8&domain=pdf
http://orcid.org/0000-0002-2788-0234

30 Page 2 of 13 F. Oz et al.

1 Introduction

Computational fluid dynamics (CFD) plays an essential role in the design of flight
vehicles. It provides detailed, accurate predictions of the airflow about such vehicles,
and it is a cost-effective alternative to expensive wind tunnel testing. However, high-
resolution CFD simulations of complex flows can takeweeks ormore to complete with
existing supercomputers. Finding ways to speedup CFD simulations is a perennial
problem.

Over the past 25 years, there has been growing interest in standing up a technology
that will allow the construction of a robust, scalable quantum computer. The engi-
neering challenge for quantum computer hardware is to reliably generate quantum
entanglement and quantum state superposition in a scalable manner, while protecting
these effects from decoherence, so that they can be exploited by quantum algorithms.
If this can be done, quantum algorithms exist which, when run on a quantum com-
puter, can speedup many important, computationally challenging problems. Perhaps
the best-known example is Shor’s quantum factoring algorithm [20] which provides
an exponential speedup over the best existing classical factoring algorithms and, con-
sequently, has greatly impacted the state of the art in cryptography.

It is natural to ask whether a quantum computer might allow a speedup of CFD
simulations. Recently, a quantum algorithm for solving partial differential equations
(PDE) has been introduced which was applied to the Navier–Stokes (NS) equations
of fluid dynamics [8]. The resulting quantum algorithm was tested on a steady-state,
inviscid, compressible nozzle flow problem which allows for shockwave formation
and for which an exact solution is known. Excellent agreement with the exact solution
was found, both when a shockwave was and was not present. The quantum NS algo-
rithm was shown to provide a quadratic (exponential) speedup over classical random
(deterministic) algorithms for non-smooth/turbulent flows.

Prior to Reference [8], Yepez used a quantum lattice-gas model to simulate the flow
of a NS fluid [23–25], and to determine solutions of Burgers’ equation [26]. The quan-
tum lattice-gas model was shown to provide a significant advantage over a classical
lattice-gas model. Steijl [21,22] used a hybrid quantum/classical approach to solve
Poisson’s equation which arises (inter alia) in incompressible NS flows. References
[4,5,16,19] also examined fluid flow problems through quantum algorithms.

In this paper, we apply the quantum PDE algorithm of Reference [8] to Burgers’
equation.We numerically simulate its application to flows inwhich a shockwave is and
is not present. We find excellent agreement between our simulation results and: (i) an
exact solution of a flowwithout a shockwave; and (ii) the results of a standard/classical
CFD simulation of flows with and without a shockwave. The outline of this paper is
as follows. In Sect. 2 we describe the application of the quantum PDE algorithm to
Burgers’ equation, while in Sect. 3 we present the results of our numerical simulation
of the quantum Burgers’ equation algorithm, and compare them to an exact solution
and a classical CFD simulation as described above. Finally, we make closing remarks
in Sect. 4.

123

Solving Burgers’ equation with quantum computing Page 3 of 13 30

2 Governing equations

Burgers’ equation [2] (BE) is an important PDE that is often used inCFDas a simplified
model for the Navier–Stokes dynamics. It contains both nonlinear and viscous terms
and is widely used to test new techniques and algorithms. In one spatial dimension it
is:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (1)

Here u(x, t) is the local flow velocity and ν is the kinematic viscosity. It proves
convenient to rewrite Eq. (1) in terms of non-dimensional variables: x∗ = x/L; u∗ =
u/u∞; and t∗ = tu∞/L , where L is a characteristic length and u∞ is a characteristic
velocity. The resulting equation is:

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ = 1

Re

∂2u∗

∂x∗2 , (2)

where Re = u∞L/ν is the Reynolds number. In the remainder of this paper, we only
work with non-dimensional variables and so will suppress the asterisk-superscript.
For inviscid flow the RHS of Eq. (2) vanishes, and in conservation form it becomes:

∂u

∂t
+ ∂

∂x

[
u2

2

]
= 0. (3)

2.1 Quantum BE algorithm

Following the prescription of Reference [8], we begin by discretizing space: x →
x j (1 ≤ j ≤ m) and u(x, t) → u(x j , t) ≡ u(j, t). The spatial boundary points
correspond to the grid-points x1 and xm . It is important to note that time t remains a
continuous parameter. We also replace the spatial derivative by a first-order upwind
scheme. This reduces the PDE, Eq.(3), to a coupled set of ordinary differential equa-
tions (ODEs):

du(j, t)

dt
= −

[
u(j, t)2 − u(j − 1, t)2

2�x

]
(2 ≤ j ≤ m − 1), (4)

where, for simplicity, the lattice spacing �x = x j − x j−1 is assumed to be constant.
Defining f (u(j, t)) = −(u(j, t)2 − u(j − 1, t)2)/2�x , Eq. (4) becomes:

du(j, t)

dt
= f (u(j, t)) (2 ≤ j ≤ m − 1). (5)

We see that BE has been replaced by a coupled set of m − 2 ODEs. We postpone
discussion of the initial- and boundary-conditions to Sect. 3.

123

30 Page 4 of 13 F. Oz et al.

To solve the BE system of ODEs (Eq. (5)) we use a quantum algorithm for solving
systems of nonlinear ODEs introduced by Kacewicz [14]. Specifically, we look for a
bounded function A(j, t) which approximates the exact solution u(j, t) over the time
interval 0 ≤ t ≤ T . We require both u(j, t) and A(j, t) to satisfy the initial condition:
u(j, 0) = A(j, 0) = U0(j).

The driver function f (u) is assumed to have continuous, bounded derivatives to
order r , with the rth derivative satisfying the Hölder condition:

∣∣∣∣∣
dr f

dur

∣∣∣∣
u1

− dr f

dur

∣∣∣∣
u2

∣∣∣∣∣ < H |u1 − u2|ρ . (6)

Here H > 0 and 0 < ρ ≤ 1. The driver function’s smoothness is parameterized by
q = r + ρ, with q � 1 (q ∼ 1) corresponding to smooth (non-smooth) functions.
Functions satisfying these conditions are known as Hölder class functions [7,9] and
are elements of the Hölder space Fr ,ρ .

Kacewicz’ quantum ODE algorithm begins by partitioning the time interval [0, T]
into n primary subintervals Ti = [ti , ti+1] of duration h = T /n, where ti = ih (0 ≤
i ≤ n). To each primary subinterval Ti is associated the: (i) approximate solution
Ai (j, t); and (ii) parameters {yi (j)| 0 ≤ i ≤ n − 1}which provide the initial condition
for the primary subinterval Ti : Ai (j, ti) ≡ yi (j). We will explain shortly how the
{yi (j)} are assigned values. Next, each primary subinterval Ti is subdivided into
Nk = nk−1 secondary subintervals of duration h̄ = h/Nk = T /nk by introducing
intermediate times ti,m = ti + mh̄ (0 ≤ m ≤ Nk). We denote the mth secondary
subinterval in Ti as Ti,m = [ti,m, ti,m+1], and the approximate solution within Ti,m by
Ai,m(j, t). Taylor’s method [1,11,17] is used to write Ai,m(j, t) as a truncated Taylor
series about ti,m :

Ai,m(j, t) = Ai,m(j, ti,m) +
r∑

ν=0

1

ν!
dν f (j, ti,m)

dtν
(
t − ti,m

)ν + O
(
h̄r+1

)
. (7)

For Hölder class functions f ∈ Fr ,ρ , the parameter r is given. For a quasi-smooth
driver function f (u), the parameter r is chosen so the error O(h̄r+1) is sufficiently
small. The approximate solutions {Ai,m(j, t)} are required to be continuous at the
intermediate times ti,m : Ai,m(j, ti,m+1) = Ai,m+1(j, ti,m+1). As noted earlier, we
required that the {yi (j)} provide the initial condition for the approximate solution
Ai (j, t) for the ith primary subinterval Ti . Thus, at t = ti ≡ ti,0, we require:
Ai (j, ti) ≡ Ai,0(j, ti,0) = yi (j). These two requirements determine Ai (j, t) through-
out the subinterval Ti . Specifically, if t ∈ Ti,m , then Ai (j, t) = Ai,m(j, t). Once
the {Ai (j, t)| 0 ≤ i ≤ n − 1} are known, the global, approximate solution is
known: A(j, t) = Ai (j, t) for t ∈ Ti . We see that once the parameters n, k, and
{yi (j)| 0 ≤ i ≤ n − 1} are assigned values, the above construction determines the
approximate solution A(j, t). How the parameters n and k are chosen is discussed in
Sect. 3. We now explain how the {yi (j)} are chosen.

123

Solving Burgers’ equation with quantum computing Page 5 of 13 30

To that end, Eq. (5) is integrated over Ti :

u(j, ti+1) = u(j, ti) +
Nk−1∑
m=0

∫ ti,m+1

ti,m
dτ f (Ai,m(j, τ))

+
Nk−1∑
m=0

∫ ti,m+1

ti,m
dτ

[
f (u(j, τ)) − f (Ai,m(j, τ))

]
, (8)

which is exact (the second term has been added and subtracted). To obtain an equation
that relates the {yi (j)}, Kacewicz replaces u(j, ti) ≈ Ai (j, ti) ≡ yi (j) with yi (j);
discards the third term on the RHS as it isO(h̄r+1); and writes τ = h̄z so that Eq. (8)
becomes:

yi+1(j) = yi (j) + Nk

Nk−1∑
m=0

h̄

Nk

∫ 1

0
dz f (Ai,m(j, z)), (9)

for 0 ≤ i ≤ n − 2. Equation (9) determines yi+1(j) from yi (j) and the Taylor poly-
nomials {Ai,m(j, t)}. The {yi (j)} are determined iteratively. The first step sets y0(j)
equal to the initial condition: y0(j) = U0(j). The {y0(j)} then determine A0(j, t)
throughout the primary subinterval T0 = [0, t1] as described above. Equation (9) then
determines y1(j) from y0(j), once the integral on the RHS is evaluated. To that end,
Kacewicz introduces Nk knot times {zm,p} in each secondary subinterval Ti,m and
approximates the integral by its average value over the knot times:

Nk−1∑
m=0

h̄

Nk

∫ 1

0
dz f (Ai,m(j, z)) = h̄

N 2
k

Nk−1∑
m,p=0

f (Ai,m(j, zm,p)) (10)

The Quantum Amplitude Estimation Algorithm [3] (QAEA) is used to estimate the
average value of f appearing on the RHS of Eq. (10). Note that this is the only task
in Kacewicz’ quantum algorithm that requires a quantum computer. Finally, before
the QAEA can be used to evaluate Eq. (10), the summand f must be shifted and
rescaled so that the new summand takes values in the range [0, 1]. Novak [18] and
Heinrich [10] showed how the QAEA could be used to evaluate a function average,
and Reference [8] explains how the shift and rescaling is implemented. In this way
the {y1(j)} are determined. They, in turn, determine the {A1,m(j, t)} throughout T1 =
[t1, t2] as described above. This allows the RHS of Eq. (9) to be evaluated (using the
QAEA to approximate the integral) giving the {y2(j)}. Iterating this procedure over
the remaining primary subintervals Ti gives the approximate solution A(j, t), where
A(j, t) = Ai (j, t) for t ∈ Ti and 0 ≤ i ≤ n−1. Reference [14] shows that for Hölder
class functions the solution error ε satisfies (for n ≥ 5):

ε ≡ sup{ j,t} |u(j, t) − A(j, t)| = O
(

1

nαk

)
, (11)

123

30 Page 6 of 13 F. Oz et al.

Table 1 Kacewicz bounds on the ε-complexity for different families of ODE algorithms applied to Hölder
class functions. Here ε is the error tolerance on the ODE solution; q = r + ρ is the driver function
smoothness parameter introduced in Sect. 2.1, with r the highest order derivative appearing in the truncated
Taylor series (see Eq. (7)), and 0 ≤ ρ ≤ 1; and 0 < γ ≤ 1

Bounds Quantum Classical random Classical deterministic

Upper O
[
(1/ε)1/(q+1−γ)

]
O

[
(1/ε)1/(q+(1/2)−γ)

]
O

[
(1/ε)1/q

]

Lower

[
(1/ε)1/(q+1)

]

[
(1/ε)1/(q+(1/2))

]

[
(1/ε)1/q

]
(Almost) Optimal (Almost) Optimal Optimal

with probability 1 − δ. Here αk = k(q + 1) − 1 and q = r + ρ is the driver function
smoothness parameter. To reach this level of performanceKacewicz requires the upper
bound ε1 on the QAEA estimate of the function average and the probability 1 − δ1

that this bound is satisfied [14] be given by ε1 = 1/nk−1 and 1− δ1 = (1− δ)1/n
k
. In

Sect. 3 we discuss how ε1 and δ are assigned values.

2.2 Complexity analysis

Both quantum and classical algorithms for BE must discretize the spatial continuum,
and in the interests of an apples-to-apples comparison, we assume both algorithms
use the same discretization procedure. This guarantees the discretization costs for
both are the same, and so comparison of the complexity of the quantum and classical
BE algorithms reduces to the relative complexity of their respective ODE solvers.

Numerical solution of an ODE requires multiple evaluations of its driver function
f (u). We assume that an oracle is available. For a classical algorithm, the oracle is a
black-box function/subroutine that returns f (u), while for a quantum algorithm, the
oracle is an operator whose action encodes f(u) in the quantum state. The quantum
oracle used in the QAEA is described in [8,18].

The computational cost of an algorithm A over a family of driver functions F
is the maximum number of oracle calls needed by A to compute an approximate
solution A(j, t) over all driver functions f ∈ F . It is thus the number of oracle calls
needed to solve the hardest driver function in F . For a given ε > 0, the ε-complexity
compt (F , ε) for an algorithm of type t = {deterministic, random, quantum} is the
minimum (computational) cost over all algorithms A of type t whose error satisfies
et (A,F) < ε. It is thus the cost of the best algorithm of type t on driver functions
f ∈ F .
Over a twenty year period, Kacewicz [12–15] determined upper and lower bounds

on the ε-complexity for quantum, classical random, and classical deterministic ODE
algorithms applied toHölder class driver functions.We reproduce his results in Table 1.

The bounds depend on the error tolerance ε, and on the parameters (introduced
in Sect. 2.1): (i) 0 < γ ≤ 1; (ii) 0 < ρ ≤ 1; and (iii) the smoothness parameter
q = r + ρ, where r is the highest order derivative kept in the truncated Taylor series
(see Eq. (7)). The upper bounds for the quantum and classical randomODE algorithms
are for the algorithms introduced in [14]. The quoted lower bounds for quantum and

123

Solving Burgers’ equation with quantum computing Page 7 of 13 30

classical random algorithms apply to all respective algorithms in these two classes, as
shown in [12,13]. The algorithms in [14] are thus (almost) optimal as the exponents
in the respective upper and lower bounds agree up to a small parameter γ , and in the
quantum case, to within a logarithmic factor which we have suppressed. Kacewicz’
classical deterministic ODE algorithm is seen to be optimal.

The ε-complexity is seen to be exponentially sensitive to the smoothness parameter
q = r +ρ. For smooth driver functions, r is large (derivatives exist to high order) and
so q � 1. For non-smooth driver functions, r , q = O(1). In the most extreme case of
a continuous, but non-differentiable function, r = 0 and so q = ρ ≤ 1.

For smooth functions (q � 1), Table 1 gives

compquant (A,F , ε) ∼ compran(A,F , ε) ∼ compdet (A,F , ε)

∼
(
1

ε

) 1
q

. (12)

Thus, for smooth driver functions, the complexity of all three types of ODE algorithm
are the same slowly varying function of ε, and so there is no quantum speed-up in this
case. However, for non-smooth driver functions, there is a quantum speed-up. This is
apparent from the upper bounds in Table 1. We see that the exponent in the quantum
upper bound is smaller than the corresponding exponent for the classical random and
classical deterministic algorithms. Its complexity is thus smaller, corresponding to less
oracle calls, and so to a shorter runtime. Thus for non-smooth driver functions there
is a quantum speed-up. The degree of speed-up increases with decreasing q, being
largest for q, γ � 1. In this limit,

compquant (A,F , ε) ∼
(
1

ε

)
;

compran(A,F , ε) ∼
(
1

ε

)2

;

compdet (A,F , ε) ∼
(
1

ε

)1/q

. (13)

The quantum algorithm thus has a square-root reduction in its ε-complexity (ora-
cle calls) over classical random algorithms, and so a quadratic speed-up in runtime.
The quantum speed-up is more pronounced when compared to classical deterministic
algorithms where the speed-up is exponential in 1/q � 1.

To summarize: the quantum ODE algorithm provides a substantial quantum speed-
up over classical random and classical deterministic ODE algorithms for a non-smooth
driver function,which is the computationallymost challenging case. The largest speed-
up occurs in the regime q, γ � 1. As noted at the beginning of this subsection, the
same conclusion applies to the quantum BE algorithm.

123

30 Page 8 of 13 F. Oz et al.

3 Results

In this section, we present the results of a simulation of the quantum BE algorithm
applied to two BE flows. In Sect. 3.1 we examine a smooth flow problem for which
an exact analytical solution can be found, while in Sect. 3.2 we examine a flow which
contains a travelling shockwave discontinuity. We also carried out a classical CFD
simulation of the BE dynamics whose results we compare with the results of our
quantum BE simulation.

Before entering into a presentation of our results, we specify the input parame-
ters for our simulation. These parameter values were used in both simulations. We
consider flows along the x-axis with 0 ≤ x ≤ 3. Recall that we are working with
non-dimensional flow velocities, positions, and times. We discretize space by intro-
ducing a lattice with m = 61 grid-points. We chose the error bound ε1 = 0.005, and
the probability δ = 0.005 which is the probability that the quantum BE algorithm
returns a solution that violates Eq. (11). We noted in Sect. 2.1 that Kacewicz requires
ε1 = 1/nk . Solving this expression for k gives:

k = 1 + ln (1/ε1) / ln(n)�, (14)

where z� denotes the smallest integer greater than z. To obtain a second relation
between n and k, we require that the duration h̄ of a secondary subinterval be consis-
tent with the Courant–Friedrichs–Lewy (CFL) stability condition. [6] This condition
introduces a local time increment �t(j) at each grid-point j ,

�t(j) = C
�x

u(j, t)
(2 ≤ j ≤ m − 1), (15)

with C < 1. We chose C = 0.1, and the CFL time-increment is then �tCFL =
min{2≤ j≤m−1} �t(j). The duration time of the simulation is then T = Nt�tCFL ,
where Nt = 1000 was chosen. As discussed in Sect. 2.1, T = h̄nk . Setting these two
expressions for T equal to each other (with minor rearrangement) gives:

h̄

�tCFL
= Nt

nk
. (16)

To insure our time partition is consistent with the CFL stability condition we require
that n and k be chosen so that h̄/�tCFL < 1. This requires

Nt

nk
< 1. (17)

Equations (14) and (17) allow n and k to be determined iteratively. Begin by choosing
a value n0 for n. Then use Eq. (14) to determine k0. Next evaluate Nt/n

k0
0 and test

whether it is less than 1. If yes, then set n = n0 and k = k0 and stop. Otherwise, set
n1 = n0 + 1 and evaluate k1 using Eq. (14). Then, test whether Nt/n

k1
1 < 1. If yes,

stop with n = n1 and k = k1. Otherwise, continue to iterate in this fashion until first

123

Solving Burgers’ equation with quantum computing Page 9 of 13 30

Fig. 1 An exact analytical solution of Burgers’ equation. We plot the exact analytical solution of Burgers’
equation for the flow problem discussed in Sect. 3.1 at three times: 0 ≤ t1 < t2 < t3 ≤ T . As explained in
Sect. 2, the flow velocity u and position x are dimensionless

finding ni and ki such that Nt/n
ki
i < 1. When this occurs, set n = ni and k = ki and

stop. In this manner we arrived at n = 18 and k = 3.

3.1 Smooth flow

Here we look for a solution of BE for a smooth inviscid flow. The boundary condition
at x1 = 0 is u(x1, t) = 0. At x61 = 3, because the flow is out of the simulation region,
the boundary condition is a floating boundary condition. The flow velocity u(x61, t)
is found by linear extrapolation from the flow velocity at x59 and x60: u(x61, t) =
2u(x60, t) − u(x59, t). Finally, we impose the initial condition u(x, 0) = x , which
satisfies both boundary conditions.

An exact solution for this flow problem can be found using separation of variables:
u(x, t) = X(x)T (t). Inserting this ansatz into BE, carrying out the separation, and
imposing the initial condition gives X(x) = x and T (t) = 1/(1 + t). The exact
analytic solution is then:

ua(x, t) = x

1 + t
. (18)

We plot the exact solution in Fig. 1
at three different times: 0 ≤ t1 < t2 < t3 ≤ T . The flow is seen to go asymptotically

to zero everywhere with increasing time.

123

30 Page 10 of 13 F. Oz et al.

Fig. 2 Percent-error of quantum and classical BE solvers relative to the exact analytical solution.We plot the
percent-error of our quantumCFD solver (Q-CFD) and a classical CFD solver (C-CFD) for BEversus spatial
position at the end of the simulation (T = 1.667). As explained in Sect. 2, the position x is dimensionless

To examine the performance of the quantum BE algorithm we wrote a quantum
CFD solver (Q-CFD) to simulate the application of the quantum BE algorithm to this
problem. The solver’s output uq(j, t)was compared with the exact analytical solution
ua(j, t). To assess the accuracy of the quantum BE algorithm solution we calculated
the percent-error:

%Error = |ua(j) − uq(j)|
ua(j)

(19)

at the end of the simulation: T = 1.667. We plot the percent-error in Fig. 2.
We see that the quantum BE algorithm result is in excellent agreement with the

exact solution. The largest percent-error occurs near x = 0 which is to be expected
because of our use of an upwind scheme. The percent-error in that region is of the order
of a few tenths of a percent. For x > 0.5, the percent-error drops to a few hundredths
of a percent. Figure 2 also plots the percent-error for a classical CFD solver (C-CFD)
applied to this problem. We see that that the quantum and classical solvers produce
comparable errors.

3.2 Travelling shockwave

Here we examine the solution of BE when the initial condition contains a shockwave
discontinuity:

u(x, 0) =
{
1 (0 ≤ x ≤ 1.5)
0 (1.5 < x ≤ 3.0).

(20)

123

Solving Burgers’ equation with quantum computing Page 11 of 13 30

Fig. 3 Comparing quantum and classical BE solvers for a travelling shockwave flow. We plot the results of
our quantum BE solver (Q-CFD) and a classical BE solver (C-CFD) at four times: a t = 0.00; b t = 0.83;
c t = 1.67; and d t = 2.50. We see that the results of both solvers are in excellent agreement. As explained
in Sect. 2, the flow velocity u and the time t are dimensionless

The boundary conditions are u(0, t) = 1 and u(3, t) = 0. These conditions require
the initial shockwave to travel in the direction of increasing x . We ran the simulation
until the shockwave discontinuity arrived at x = 3.0. This insures that the boundary
condition at x = 3.0 is obeyed throughout the simulation. For this flow problem, no
exact analytical solution is known. Thus we compared the results of our Q-CFD solver
to that of a C-CFD solver. We plot the results for both solvers in Fig. 3

for t = 0, 0.83, 1.67, and2.5.We see that: (i) the quantumBEalgorithmsuccessfully
converged even though the flow contained a travelling shockwave discontinuity; and
(ii) theQ-CFD results are in excellent agreementwith that of theC-CFDsolver. Finally,
notice that both solvers slightly rounded the kinks in the flow solution by comparable
amounts.

4 Conclusion

In this paper we have applied the quantum PDE algorithm of Reference [8] to BE in
one-spatial dimension.We numerically simulated the quantum algorithm’s application
to inviscid flows with and without a shockwave. The results found were compared to

123

30 Page 12 of 13 F. Oz et al.

an exact solution which is known when no shockwave is present in the flow, and to
a standard CFD simulation when a shockwave is and is not present. Agreement was
excellent, and the quantum algorithm’s error was seen to be of the same order as that of
the classical CFD simulation. We underscore that the quantum algorithm successfully
converged to the solution even when a shockwave was present. We also discussed
the computational complexity and speedup of the quantum BE algorithm which was
found to be identical to that of the quantum PDE [8] and ODE [14] algorithms. It was
shown that there is a quadratic (exponential) speedup over classical random (determin-
istic) algorithms for non-smooth driver functions which is the computationally most
challenging case. It is important to note that this speedup is only expected to occur
when the quantum algorithm is run on a quantum computer. Numerical simulation of
the quantum algorithm on a classical computer is not expected to show a quantum
speedup as classical computers do not generate the quantum entanglement or state
superposition that underlie the speedup.

To close, we list a few useful directions for future work:

– Application of the quantum PDE, NS, and BE algorithms to problems in two or
more spatial dimensions;

– Determining the quantum circuit implementation of the quantum PDE algorithm;
and

– Applying the quantum NS and BE algorithms to more complex flows.

Acknowledgements F. Gaitan thanks T. Howell III for continued support.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Atkinson, K.: Elementary Numerical Analysis. Wiley, New York (1985)
2. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170

(1915)
3. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Con-

temp. Math. 305, 53–74 (2002)
4. Cao, Y., Papageorgiou, A., Petras, I., Traub, J., Kais, S.: Quantum algorithm and circuit design solving

the Poisson equation. New J. Phys. 15(1), 013021 (2013)
5. Chen, Z.Y., Xue, C., Chen, S.M., Lu, B.H., Wu, Y.C., Ding, J.C., Huang, S.H., Guo, G.P.: Quantum

finite volume method for computational fluid dynamics with classical input and output. arXiv preprint
arXiv:2102.03557 (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2102.03557

Solving Burgers’ equation with quantum computing Page 13 of 13 30

6. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen
physik. Math. Ann. 100(1), 32–74 (1928)

7. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)
8. Gaitan, F.: Finding flows of a Navier–Stokes fluid through quantum computing. NPJ Quantum Inf.

6(1), 1–6 (2020)
9. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

(1983)
10. Heinrich, S.: Quantum summation with an application to integration. J. Complex. 18(1), 1–50 (2002)
11. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University

Press, Cambridge (2009)
12. Kacewicz, B.: Randomized and quantum algorithms yield a speed-up for initial-value problems. J.

Complex. 20(6), 821–834 (2004)
13. Kacewicz, B.: Improved bounds on the randomized and quantum complexity of initial-value problems.

J. Complex. 21(5), 740–756 (2005)
14. Kacewicz, B.: Almost optimal solution of initial-value problems by randomized and quantum algo-

rithms. J. Complex. 22(5), 676–690 (2006)
15. Kacewicz, B.Z.: Optimal solution of ordinary differential equations. J. Complex. 3(4), 451–465 (1987)
16. Mezzacapo, A., Sanz, M., Lamata, L., Egusquiza, I., Succi, S., Solano, E.: Quantum simulator for

transport phenomena in fluid flows. Sci. Rep. 5(1), 1–7 (2015)
17. Moursund, D.G., Duris, C.S.: Elementary Theory and Application of Numerical Analysis. Dover, New

York (1988)
18. Novak, E.: Quantum complexity of integration. J. Complex. 17(1), 2–16 (2001)
19. Ray, N., Banerjee, T., Nadiga, B., Karra, S.: Towards solving the Navier–Stokes equation on quantum

computers. arXiv preprint arXiv:1904.09033 (2019)
20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Rev. 41(2), 303–332 (1999)
21. Steijl, R.: Quantum algorithms for fluid simulations. In: Advances in Quantum Communication and

Information, p. 31. IntechOpen (2019)
22. Steijl, R., Barakos, G.N.: Parallel evaluation of quantum algorithms for computational fluid dynamics.

Comput. Fluids 173, 22–28 (2018)
23. Yepez, J.: Lattice-gas quantum computation. Int. J. Mod. Phys. C 9(08), 1587–1596 (1998)
24. Yepez, J.: Quantum computation of fluid dynamics. In: NASA International Conference on Quantum

Computing and Quantum Communications, pp. 34–60. Springer (1998)
25. Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63(4), 046702

(2001)
26. Yepez, J.: Quantum lattice-gas model for the burgers equation. J. Stat. Phys. 107(1), 203–224 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1904.09033

	Solving Burgers' equation with quantum computing
	Abstract
	1 Introduction
	2 Governing equations
	2.1 Quantum BE algorithm
	2.2 Complexity analysis

	3 Results
	3.1 Smooth flow
	3.2 Travelling shockwave

	4 Conclusion
	Acknowledgements
	References

