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I. Introduction

IMPROVED aerodynamic designs and new aerodynamic

technologies will play a vital role in improving the next-

generation aircraft’s performance and contribute strongly to the

product cost and operability. Active flow control (AFC) is one of the

promising technologies to control boundary-layer separation,

mixing, and noise. In recent years, actuators for AFC and especially

fluidic oscillators have received much interest. The state of the art of

improving aerodynamic performance [1], AFC actuators [2], and

fluidic oscillators [3] was described in recent review papers.

Fluidic actuators increase momentum in the local flowfield by

fluid injection. Sweeping jet (SWJ) actuators belong to this category

of actuators, and they are based on fluidic oscillators with no moving

parts [2], as shown in Fig. 1. An SWJ actuator emits a continuous but

spatially oscillating jet at the outlet when pressurized with a fluid [4].

The oscillations are entirely self-induced and self-sustaining. As the

supplied fluid passes through the SWJ actuator, the jet attaches itself

to either side due to the Coanda effect. Then, pressure increases in the

feedback loop and pushes the jet to the other side. This process

repeats cyclically. As a result, an oscillating jet that sweeps from one

side of the exit nozzle to the other is obtained [4,5].

In the last decade, an increasing number of studies employing the

SWJ actuator have been published, especially in flow-separation

control. Significant aerodynamic performance improvements have

been achieved using new concepts [6,7] or SWJs [5,8–19]. The SWJ

actuator has been shown to be an effective and efficient tool for

separation control. Nonetheless, a lack of knowledge continues

regarding the actuator’s properties, underlying mechanisms, and

governing parameters for flow control applications [3]. Further
development of SWJ actuators is needed before their deployment into
actual applications.
Recent experimental [20,21] and numerical studies [21–26] on

SWJ actuators in a quiescent environment showed that the SWJ
actuator is a viable flow control actuator candidate due to its simple
design with no moving parts and its spatially oscillating high-
momentum flow output.
The objective of the present study was to numerically determine

the effectiveness of an SWJ actuator in controlling flow separation.
To investigate the flow structures and control mechanisms, a widely
used two-dimensional (2-D) NASA hump model [27] was under-
taken. Themodel is aGlauert/Goldschmied-type body, geometrically
similar to that used by Seifert and Pack [28]. Themodel wasmounted
between two glass end-plate frames, and both leading and trailing
edges were faired smoothly, and a wind-tunnel splitter plate was
placed under the model as shown in Fig. 2. Low-speed flow
separation on a wall-mounted hump and its control using steady
suction have been studied experimentally to generate a data set for the
development and evaluation of computational methods [29]. The
details of the experiment are given in Greenblatt et al. [29,30] and
Naughton et al. [31]. It is a nominally 2-D experiment, treated as such
for the computational fluid dynamics (CFD) validation. Exper-
imental and computational data from various Reynolds-averaged
Navier–Stokes (RANS) models are available for comparison in the
NASA Langley Research Center Turbulence Modeling Resource
[32]. Recently, an experimental study of flow-separation control by
employing round jet and SWJwas performed byBorgmann et al. [33]
for a canonical hump model. They conducted a detailed baseline
characterization of flap angle, reference static pressure, Reynolds
number, boundary-layer trip, and aspect ratio. They provided the
comparison of pressure coefficient with previous experimental
studies [28,29].
In the present study, we numerically tested the performance of an

SWJ actuator on flow-separation control using 2-D unsteadyRANS
(URANS) simulations over a wall-mounted hump model. The SWJ
actuator was integrated into the wall-mounted hump model at the
upstream of separation point (65% of the chord) and angled at
30 deg to the freestream direction. The interaction of the oscillation
jet in this orientation with freestream and separation bubble
was studied. The three-dimensional configuration that will be
investigated in future studies may exhibit spanwise vortical
structures aswell. In the present study, however, we considered only
2-D configuration.

II. Numerical Model and Validation

The geometry of the hump imitated the upper surface of the
Glauert–Goldschmied airfoil, and the computational domain was
created using the description provided by Greenblatt et al. [29]. The
computational domain was 2-D, and the chord length of the hump
was 420 mm. The SWJ actuator was located at 65% of the chord and
was angled at 30 deg to the freestream direction. The oscillating jet
came out of a single exit nozzle, located to the upstream of the
separation point, as illustrated in Fig. 3. In our previous studies,
the fully turbulent, compressible oscillating jet flow from the SWJ
actuator was investigated using three-dimensional URANS simula-
tions [23]. The SWJ actuator geometry with an exit-nozzle throat
height of h � 6.35 mm was reproduced from reference [22].
Because the size of the SWJ actuator geometry studied before
[21–26] was larger than the maximum height of the wall-mounted
hump model, the SWJ actuator geometry was scaled down by four
times. It shrunk the exit-nozzle throat height from 6.35 to 1.5875mm
(0.378% of the chord length). The inlet channel height of the SWJ
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actuator was 4.0531 mm (0.96% of the chord length). The size of the

computational domain was determined from a recent study [34], and

the height and length were set to 0.91c and 8.41c, respectively.
Similar to Fisher et al. [34], no modification was applied to the top

boundary to include the effects of the end plates.
The commercial CFD software, ANSYS Fluent v17.2, which

employs a control volume method to discretize the RANS equations

with second-order accuracy, was used for the numerical investigation.

The SIMPLE algorithm was used for pressure–velocity coupling

for steady-state calculations, whereas the PISO algorithmwas used for

unsteady calculations with a second-order fully implicit scheme for

time integration. Theworking fluidwas air. The densitywas calculated

from the ideal gas law. The viscosity was evaluated using Sutherland’s

law using the reference viscosity μ0 � 1.716 × 10−5 kg∕�m ⋅ s�,
reference temperature T0 � 273.11 K, and effective temperature

S � 110.56 K. Similar to the experiment [29], x∕c � −2.14 was set
as the reference location for calculations.At this location, the reference

pressure was set to 101,325 Pa. The inlet velocity was V inlet �

34.6 m∕s (M � 0.1), normal to the boundary. A fully turbulent flow
was assumed. The turbulence intensity at the inlet was 5%, and the
turbulent length scale was 1 mm. The boundary and reference
conditions were generated from references [29,32], and are shown in
Fig. 4. The flow parameters at the inlet boundary of the 2-D NASA
wall-mounted hump model are listed in Table 1. Moreover, the flow
parameters at the SWJ actuator inlet boundary with varyingmass-flow
rates are given in Table 2.
The wall-mounted hump configuration has proved to be a

challenging test case with most RANS models overpredicting the
separation bubble length. However, they still give qualitatively
correct solutions that are sufficient for comparative studies. A
summary of recent studies employing RANS turbulence models to
simulate the 2-DNASAwall-mounted humpmodel is given in table 1
of reference [34]. The integration of the SWJ actuator to the wall-
mounted hump model increases the computational and physical
complexities of the problem. Higher-fidelity simulations, such as
large-eddy simulation (LES) [35], require prohibitive computational
resources if a large number of cases are to be solved. Therefore, the
2-DURANS simulation approachwas adopted in the present study to
keep the computational cost at an affordable level. It should be noted
that the present study intended to make an initial quantitative
performance prediction of the SWJ actuator for the separated flow
over the widely used 2-D NASA wall-mounted hump model. The
present study is a conceptual exploration study similar to the case in
reference [34], and further investigation using three-dimensional
higher-fidelity simulations is necessary to understand the detailed
flow mechanisms.
In an earlier study [22], an unsteady numerical analysis of an SWJ

actuator was performed to develop an understanding of internal flow
oscillations using the realizable k − ε and the shear-stress transport
(SST) k − ω turbulence models. The SST k − ωmodel predicted the

Fig. 1 Schematic of an SWJ fluidic oscillator [2].

Fig. 2 NASA wall-mounted hump model by Greenblatt et al. [29].

Fig. 3 Sketch of the SWJ actuator with 2-D NASA wall-mounted hump.
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jet velocity profiles better than the realizable k − εmodel. Therefore,
in the present study, the SST k − ω model was used for unsteady
simulations.
For unsteady analyses, the time-step size was set to Δt �

1 × 10−5 s (71 time steps per jet oscillation cycle for _m � 268 g∕s) to
capture the oscillating jet from the SWJ actuator. The solution did not
change with a further reduction of the time step. Previous studies
showed that decreasing the mass-flow rate decreases the jet oscillation
frequency [23], and therefore, the same time-step size was used in all
simulations. Each computation was initiated with a uniform velocity
of (V inlet, 0) in the entire computational domain, and an unsteady
simulation was run for 10,000 steps (0.1 s, or approximately 140
periods for _m � 267.9 g∕s). Then, the unsteady simulation was run
for another 10,000 time steps to record the time statistics, resulting in a
total of 20,000 time steps for each simulation. The maximum number
of iterations to be performed per time step was set to 20.
The computational mesh was created using the ANSYS Meshing

software, and the sensitivity of calculations with respect to grid size
was checked to determine the sufficient resolution and grid quality
metrics. The mesh parameters are given in Table 3. To achieve mesh
independence, the parameters for mesh 1 in Table 3 were successively
halved, and fourmesheswere created. Figure 5 shows a computational
mesh for the 2-D NASA hump using the mesh 1 parameters. The final

mesh (mesh 4) has 2.6 million elements, with the first 41 layers of the
wall stretching at a growth rate of 1.1.
Using the numerical model described previously, unsteady

simulations were run for the 2-D NASA hump model using the four
computational meshes given in Table 3. As shown in Fig. 6, the
turbulent boundary-layer velocity profile at the reference location
(x∕c � −2.14) is compared with the experimental measurements of
Greenblatt et al. [29] given at the NASA turbulence resources website
[32].Moreover, the logarithmic lawof thewall is included in the figure.
The numerical results show a good agreement with the law of the wall
and some agreement with the experimental data. The splitter-plate
effect was not considered in this simulation. The pressure coefficient
Cp over the hump from the unsteady calculations for all the meshes
over the hump is plotted in Fig. 7, and experimental data are included
for comparison. The time-averaged Cp distributions from the
numerical simulations were shifted by −0.03 to better match the
experimental reference upstream conditions. The simulation results
and experimental data agree well for x∕c < 0.2. There is a slight
increase of Cp for 0.2 < x∕c < 0.6 in all simulations due to the
end-plate effect, which is not included in the present study. For
x∕c > 0.65, the results indicate a shift as seen in all RANS simulations
[32]. Increasing the grid size did not change the simulation results,
indicating that a mesh-independent solution was obtained.
To assess the performance of the SWJ actuator on flow-separation

control, the SWJ actuator was integrated into the hump model, and a
new computational mesh (HSM3) was created based on the
parameters of mesh 3. The number of layers to capture the boundary-
layer profiles was reduced to 15, and the maximum face size was
increased to 2 × 10−3 m. Figure 8 shows the computational mesh
near the SWJ geometry. The mesh shown in Fig. 8 was used
throughout the present study to assess the performance of the SWJ
actuator running at different flow conditions listed in Table 2.

III. Results and Discussion

In this section, we performed 2-D URANS simulations for the
SWJ actuator integrated to the 2-D NASAwall-mounted hump. An
ideal gas was assumed with γ � 1.4 and R � 287 J∕�kg ⋅ K�. The
governing equations were discretized in space using a cell-based
least-squares finite volume formulation for pressure–velocity
coupling. A second-order discretization for pressure and a second-
order upwind formulation for density, momentum, turbulent kinetic
energy, specific dissipation rate, and energy were adopted. A fully
turbulent flow was assumed, and the SST k − ω model was used in
the simulations. A bounded second-order implicit formulation was
used for the time-dependent solution formulation. The time-accurate
simulations used a constant time step ofΔt � 10−5 s. Themaximum
number of iterations performed per time step was 20.
In the present 2-D simulations, the mass-flow rate of the SWJ

actuator is described as a mass-flux boundary condition. In the
literature, it is customary to report the mass-flow rate, and therefore,
Table 4 is provided as a reference. The height of the SWJ inlet
boundary is 4.0531 × 10−3 m, as shown in Fig. 3c. The SWJ inlet
area was calculated assuming a unit depth of 1 m, and mass-flow
rates were calculated. The mass fluxes given in Table 4 were used

Table 1 Flow parameters at the
inlet boundary of the 2-D NASA

wall-mounted hump model

Parameter Values

M 0.1
Rec 936,000
P0 102,036 Pa
T0 298.93 K

Table 2 Flow parameters at the SWJ
actuator inlet boundary

_m, g∕s M ReDH P0, Pa T0, K

44.6 0.027 1368 101,826 298.25
89.3 0.052 2738 105,085 298.30
178.6 0.096 5474 114,290 298.86
267.9 0.131 8127 126,613 299.61

Fig. 4 Boundary conditions for 2-D NASA wall-mounted hump [29,32] with SWJ actuator.

Table 3 Mesh parameters

Name
Maximum
face size

First layer
thickness

Maximum
layers

Growth
rate

Number of
elements

Mesh 1 6.0 × 10−3 4 × 10−5 41 1.1 69,722
Mesh 2 3.0 × 10−3 2 × 10−5 41 1.1 213,664
Mesh 3 1.5 × 10−3 1 × 10−5 41 1.1 724,490
Mesh 4 7.5 × 10−4 8 × 10−6 41 1.1 2,626,101
HSM3 2.0 × 10−3 1 × 10−5 15 1.1 575,937
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in our previous studies [22,23]. Using the definition provided in

reference [33], a nondimensional momentum coefficient (Cμ) was

calculated for better comparison between different configurations.

However, for the 2-D configuration used in the present study, the

reference area Aref is defined differently as the product of the chord

length (c � 0.42 m) and the unit depth (1 m). The jet exit velocity

was calculated as a result of the mass-flow rate assuming freestream

conditions at the actuator exit.

The time history of velocity magnitude was sampled at the

downstream of the SWJ exit nozzle (x∕c � 0.654; y∕c � 0.109) for
each mass-flow rate listed in Table 4, and the results are plotted in

Fig. 9a. As shown in the figure, the velocity magnitude was

nondimensionalized by a reference velocity of 34.6 m∕s. A periodic

variation of velocity similar to a square wave is visible, and it is more

pronounced at higher mass-flow rates. Because all the simulations

were run at the constant time-step size of 1 × 10−5 s, another

simulation was performed using 5 × 10−6 s at the highest mass-flow-

rate conditions, which also produced the highest jet oscillation

Fig. 5 Computational mesh of the 2-D NASA hump (mesh 1).

Fig. 6 Comparison of velocity profile at the reference location with
experimental measurement.

Fig. 7 Time-averaged Cp over the hump with no-flow-control case
compared with experimental data [29].

Fig. 8 Computational mesh with the SWJ actuator (HSM3).

Table 4 SWJ actuator mass-flow rates

Mass flux, kg∕m2 _m, g∕s Cμ, %

11.017 44.6 0.4
22.033 89.3 1.4
44.067 178.6 5.7
66.100 267.9 12.8

Fig. 9 Timehistory of velocitymagnitude sampled at the downstreamof
the SWJ actuator exit nozzle.
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frequency. The comparison of the time history of the velocity

magnitude is presented (Fig. 9b), and a very close agreement was

observed. The maximum and minimum velocities were very close

over the oscillation cycles. However, a slight phase shift was also

observed. To find the jet oscillation frequency at every mass-flow

rate, a fast Fourier transform (FFT) analysis was performed, and the
results are listed in Table 5. The estimated frequency increased with

the mass-flow rate linearly (f � 5.0166 _m� 72.61; R2 � 99.77%).

The frequency analysis of _m � 267.9 g∕s case resulted in the same

frequency of 1401 Hz for both of the time-step sizes, which indicates

the Δt � 1 × 10−5 s is adequate to capture the jet oscillation and its
frequency.
Snapshots of unsteady simulations are shown in Figs. 10 and 11.

Figure 10 shows the instantaneous, mean, and rms velocity

magnitude contours around the SWJ actuator operating at a mass-

flow rate of 267.9 g∕s. Figure 10a shows the jet entering into the SWJ
actuator, the jet attachment to the upper wall due to the Coanda effect,

and the high-speed jet exiting the SWJ actuator parallel to the

freestream. Figure 10b shows the simulation results are averaged over

0.1 s using 10,000 steps, and time-averaged values are calculated.

Unlike earlier results of an SWJ actuator in a quiescent environment

[21–23], the oscillating jet from the SWJ actuator was biased toward

the streamwise direction due to the existence of freestream and

asymmetric exit walls, as shown in Fig. 10c. The instantaneous total

pressure (Pa gauge, Pref � 101;325 Pa) contours inside the SWJ

actuator are shown in Fig. 11a. Higher values of total pressure show

that the internal jet flow branches in the SWJ actuator core

toward feedback channels and the SWJ actuator exit nozzle. A

high-speed cooling effect along the jet is visible in Fig. 11b. The

Mach number at the SWJ actuator exit nozzle reached up to 0.57,

as shown in the instantaneousMach contours plotted in Fig. 11c for a

mass-flow rate of 267.9 g∕s, which corresponds to a momentum

coefficient of Cμ � 4.08%.

The total pressure drop inside the SWJ actuator for a mass-flow rate

of 178.6 g∕s is plotted in Fig. 12 over an oscillation cycle at various

phases, as indicated by the time stamps. The contour values were

nondimensionalized by the reference pressure of Pref � 101;235 Pa.
The jet oscillation frequencywas calculated as 1 kHz. Snapshots show

the various phases of the oscillation process, such as the jet exiting the

SWJ actuator (Figs. 12a and 12e) and flow from the feedback channel

pushing the jet to the other side (Figs. 12d and 12h). An animation of

the jet oscillation can be seen in Supplemental Video S1. Moreover, a

set of videos of total pressure drop for the mass-flow rate of 267.9 g∕s
including the streamlines are provided inSupplementalVideos S2–S5.

Velocity magnitude contours are shown in Fig. 13 for the mass-

flow rate of 178.6 g∕s. The velocity was nondimensionalized with

the reference velocity ofVref � 34.6 m∕s. In the FFTanalysis, the jet
oscillation period was estimated as 1 ms and the phase-locked

snapshots were plotted. However, the snapshots seemed to be in

phase when the period was set to 1.01 ms, as shown in Fig. 13. The

full oscillation cycle of velocity contours and streamlines can be seen

Table 5 Jet oscillation frequency

_m, g∕s f, Hz

44.6a 300
89.3a 500
178.6a 1001
267.9a 1401
267.9b 1401

aΔt � 1 × 10−5 s.
bΔt � 5 × 10−6 s.

Fig. 10 Two-dimensional NASA humpwith SWJ actuator operating at
mass-flow rate of 267 g∕s (Cμ � 4.08%); dimension of velocity in meters
per second.

Fig. 11 Contours of instantaneous a) total pressure (Pa gauge), b) static
temperature (K), and c) Mach number around the SWJ actuator at a
mass-flow rate of 267 g∕s (Cμ � 4.08%).
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in Supplemental Videos S6–S9 for the mass-flow rates of 178.6

and 267.9 g∕s.
Figure 14 shows the mean velocity contours superimposed with

streamlines that are calculated from the mean velocity components

for the mass-flow rates of 0.0, 44.6, 89.3, 178.6, and 267.9 g∕s.
The reattachment points are extracted from Fig. 14 and summarized

in Table 6 along with the nondimensional jet velocity and momentum

coefficient Cμ. In the table, the reattachment locations from the

2-D NASA wall-mounted hump separated flow validation case

(no plenum) [29,32] are included as a reference. It is provided in

Fig. 14a, in which the reattachment occurs at x∕c � 1.25. In the table,
the baseline represents the SWJ actuator integrated wall-mounted

humpgeometrywith no flow control, as shown inFig. 14b.Because all

the RANS models overpredicted the reattachment location, the

comparison was made with the baseline result, x∕c � 1.38. In all of

the cases, the separation bubble sizewas reduced and the reattachment

location moved upstream. For the mass-flow rate of 267.9 g∕s, the
reattachment point moved 41% in the upstream direction. An

animation showing the interaction of the oscillating jet and the
separation bubble can be seen in Supplemental Video S10. The video

file shows that the SWJ actuator was working in two modes and

continuously oscillated between them. In the first mode, the jet

approached thewall on the left side of the SWJ actuator symmetry axis

and injected momentum almost vertically to the incoming flow over

the hump. It created a spanwisevortex. Three-dimensional simulations

are needed to understand the generation and interaction of these

Fig. 12 Snapshots of total pressure drop inside the SWJ actuator for _m � 178.6 g∕s; total pressure is nondimensionalized with the reference pressure,
Pref � 101;325 Pa; jet oscillation frequency is 1 kHz.
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vortical structures fully. In the second mode, the jet approached the
wall on the right side of the SWJ actuator symmetry axis and injected
momentum parallel to the surface.Moreover, the previously generated
spanwise vortex was pushed by the high-speed jet in the downstream
direction toward the separation bubble. This interaction attached the
flow in the downstream of the SWJ actuator. In both modes, the high-
speed jet flow from the SWJ actuator moved between the separation
bubble and the low-speed region above, as shown in Fig. 14f.

On the other hand, the addition of the SWJ actuator to the hump
model increased the separation bubble size, and it moved the

reattachment location 10.4% in the downstream direction from
x∕c � 1.25, as depicted in Figs. 14a and 14b. This can be seen as the
penalty of the geometric modification.
The pressure coefficient was calculated from the time-averaged

results for various mass-flow rates and is plotted in Fig. 15.

Experimental data from reference [29], which was provided by

Fig. 13 Snapshots of velocity contours inside the SWJactuator for _m � 178.6 g∕s; velocitymagnitude is nondimensionalizedwith the reference velocity,
Vref � 34.6 m∕s; jet oscillation frequency is 1 kHz; each snapshot is taken at 1.01 ms apart from each other to get the same phase.
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reference [32], are included. The numerical simulation results are

shifted by −0.06 to match the experimental reference upstream

values. A similar approach was also used in reference [32]. The

momentum coefficients and jet-to-reference-velocity ratios are

provided for comparison. In Fig. 15, the enlarged separation bubble

caused the difference between the baseline result (hump and SWJ

with no flow control) and the experimental measurements (hump

only). The spike in theCp distributions forCμ > 1.4% resembles the

spike in the inviscid solution given in fig. 12 of Ref. [33], showing the

effectiveness of flow control. Furthermore, in the literature,

significant differences of the pressure coefficient between three

experimental studies [28,29,33] are reported, as shown in fig. 9 of

Ref. [33]. After an investigation of several parameters, including

local and total blockage corrections, Borgmann et al. [33] concluded

that a combination of end-plate effects and incoming boundary-layer

behavior is responsible for discrepancies, not the blockage effect. In

the present 2-D concept exploration study, the blockage effect was

not included, similar to another recent 2-D numerical study by Fisher

et al. [34].

Table 6 Flow reattachment locations for varying momentum
coefficients (c � 0.42 m)

_m, g∕s V jet∕Vref Cμ, % x∕c
Relative

improvement, %

Baseline (no flow control)a — — — — 1.38 ——

44.6 0.69 0.4 1.35 2
89.3 1.37 1.4 1.30 6
178.6 2.74 5.7 1.05 24
267.9 4.12 12.8 0.82 41

Note: Relative improvement was calculated using the reattachment location of

baseline case without SWJ actuator, x∕c � 1.25.
aBaseline refers to the 2-D NASAwall-mounted hump and integrated SWJ actuator

with no flow control. In the 2-D NASA wall-mounted hump experiment, the

reattachment location was at x∕c � 1.1 [29]. CFL3D simulations (SST k − ω; no
control) indicated that the reattachment location was at x∕c � 1.25–1.27 [32].

Fig. 14 Streamlines superimposed on velocity of separated flow for varying mass-flow rates; background color represents the mean velocity magnitude
(m∕s).

Fig. 15 Comparison of time-averaged pressure coefficient with

experimental data [29] for varying SWJ mass-flow rates.
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IV. Conclusions

In this concept exploration study, a set of 2-DURANS simulations
was performed to examine the potential use of an SWJ actuator to
reduce flow separation. The simulations were performed for the 2-D
NASAhumpmodel with an integrated SWJ actuator configuration to
assess the performance of the SWJ actuator compared to the baseline
(modified geometry with no flow control) and experimental
measurements. A fully turbulent flow was assumed and the SST
k − ω turbulence model was used. Four different mass-flow rates
ranging from 44.6 to 267.9 g∕s were applied to the SWJ actuator.
One of the main conclusions from this study is that the SWJ

actuator reduced the size of the separation bubble in all cases and the
reattachment point moved upstream by 41% when operating at
Cμ � 12.8%. The Cp distribution approach to the inviscid solution
for Cμ > 1.4%. It is a clear indication of the effectiveness of flow
control. The simulation results suggest that the performance of the
SWJ actuator, in terms of decreasing the size of the separation bubble,
increases with the mass-flow rate. However, the integration of the
SWJ actuator to the hump model moved the reattachment location
8% in the downstream direction.
The present study aimed tomake an initial qualitative prediction of

the performance of an SWJ actuator on awidely used validation case:
the 2-D NASA wall-mounted hump separated flow case. Further
investigation of a three-dimensional model and other orientations of
the SWJ actuator using higher-fidelity simulations, such as LES or
direct numerical simulation, is required to fully understand the
detailed flow separation and control mechanisms.
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