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Hypersonic boundary-layer stability has significant importance in vehicle design and successful operation. This

paper investigates the stabilization effects of local wall cooling on the hypersonic boundary layers over a 5 deg half-

angle blunt cone with a nose radius of 0.0254 mm. We employed a high-order-accurate flow solver to calculate the

steady flow for a freestreamMach number of 6.0 and a unit Reynolds number of 25.59 × 106∕m. In simulations, we

considered partial wall cooling, entire wall cooling, and adiabatic wall scenarios. Furthermore, we examined partial

cooling parameters such as strip location, length, and temperature profiles. We calculated the growth rates, phase

speed, and N-factor diagrams using a linear stability analysis. The results showed that complete wall cooling

destabilizes the boundary layer. However, the cooling strip upstream of the synchronization point stabilized the

boundary layer by damping the disturbances. The longer cooling strip further stabilized the boundary layer. The

cooling strip placed downstream of the synchronization point destabilized the boundary layer.

Nomenclature

A, B = inviscid flux vectors in the axial and radial directions
Av, Bv = viscous flux vectors in the axial and radial directions
c = phase speed
cp, cv = specific heat at constant pressure and volume

E = total energy
e = molecular internal energy
F = dimensionless frequency
f = dimensional frequency
J = Jacobian matrix
k = thermal conductivity
M = Mach number
N = empirical number for eN method
p = pressure
Pr = Prandtl number
Q = state vector
q = heat flux
Re = Reynolds number
S = source term
u, v, w = velocity components in x, y, and z directions
x, y = two-dimensional coordinates
x, y, z = three-dimensional coordinates
x, y, θ = axisymmetric coordinates
α, β = wave number in x and z directions
μ = dynamic viscosity
ν = kinematic viscosity

ξ, η = curvilinear coordinates
ρ = density
σ = growth rate
τ = shear stress
ω = angular frequency

Subscripts

ad = adiabatic wall condition
e = boundary-layer edge condition
i = imaginary component of a complex number
tr = transition onset location
w = wall condition
∞ = freestream condition

I. Introduction

H YPERSONICboundary-layer transition from the laminar to the
turbulent state is crucial for efficient hypersonic vehicle design.

Key effects include an increase in the aerodynamic heating [1,2]. This
heat transfer increment may require a heavier and more expensive
thermal protection system, potentially including active cooling or
thicker material [3]. Moreover, viscous drag (which represents up to
50% of the total drag [4,5]) increases in turbulent flow. Besides these
effects, the boundary-layer transition affects the overall vehicle oper-
ability andmaintenance requirements, includingmore frequent refur-
bishment or replacement of thermal protection system materials. A
transition control system capable of stabilizing boundary-layer tran-
sition to reduce the aforementioned critical effects is therefore of
great interest.
Although transition mechanisms in hypersonic flow are not com-

pletely understood, especially for complex geometries, previous
research has shown that there are at least two different paths from a
laminar to a turbulent hypersonic boundary-layer state. If the surface
of the body is smooth enough and the freestream environment is quiet
(in order words, relatively disturbance-free), the first path can occur.
This path includes receptivity, which is the mechanism of very small
disturbances entering the laminar boundary-layer, generating waves
[6], the linear phase, and nonlinear breakdown to turbulence [7].
Linear stability theory (LST) [8] provides a model for how small
unstable disturbances are amplified in the linear phase. The disturb-
ances reach a critical level and trigger nonlinear breakdown to
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turbulence. In the second path, which can occur in the presence of
large freestream disturbances or rough surfaces, the linear phase is
bypassed and freestream disturbances grow nonlinearly.
TheMach number, Reynolds number, vehicle geometry, and initial

amplitude are the main parameters that affect the evolution and
breakdown of the instability waves. The complex flow environment
and the disturbance field growing in the hypersonic boundary layer
are illustrated in Fig. 1. In this figure, three different types of
disturbances (acoustic, vorticity, and entropy) come from the inter-
action of the main shock wave with environmental disturbances [9].
As linear stability theory explains, in a disturbance-free environ-

ment, transition to turbulence occurs because instabilities are ampli-
fied within the boundary layer. The first and secondMack instability
modes are directly related to the local Reynolds number in a two-
dimensional hypersonic boundary layer. It is crucial to stabilize these
modes to delay and control the transition process. Research has
mostly focused on these modes to facilitate transition control.
Although the second mode is the dominant instability mode in the
hypersonic boundary layer for many slender geometries with low
wall-temperature ratios, it can be stabilized with an ultrasonically
absorptive coating (UAC) [10–19]. Fedorov et al. [11] showed that
the UAC can significantly stabilize the secondmode, and subsequent
transition can therefore be delayed. Experimental studies [20–23]
verified this model and showed that the UAC can stabilize the second
mode. However, this approach slightly destabilizes the first mode.
The first mode can be stabilized with full wall cooling; however,

the second and higher modes will be destabilized at hypersonic
speeds [24–31]. As a result, in hypersonic flow where the second
mode is dominant, full wall cooling is not an optimummethod to use
as laminar boundary-layer control. The destabilizing behavior of the
full wall cooling can be significantly mitigated with local wall cool-
ing/heating. In supersonic flow, Masad and Abid [32] used local
heating to stabilize the first mode in Mach 3.5 flow. More recently,
Polivanov et al. [33] numerically investigated the effect of the local
cooling/heating strips on the stability behavior of the hypersonic
boundary layer. Their study used a sharp cone in Mach 6 flow. They
revealed that the local cooling delays the transition and decreases the
second-mode amplitude. Moreover, they also concluded that the
neutral point is a critical factor in stabilizing behavior. The effect of
the cooling strip can be reversed by the location with respect to the
neutral point. After Polivanov et al., Soudakov et al. [34] used
different locations for local cooling and heating to investigate the
mode amplification and to determine the transition onset point.
AlthoughSoudakovet al.’s results agreewith Polivanovet al.’s results
[33], they stated that the eN method based on the local stability
analysis may be misleading because of the highly nonuniform
regions around the local cooling/heating strips.

Fedorov et al. [35] and Sidorenko et al. [36] investigated the effect
of local cooling/heating in a Mach 6 flow for a sharp cone. They
numerically and experimentally investigated the stability behavior.
The results indicate that the local cooling delays the transition, and
their results were in agreement with the previous findings. They
stated that the local cooling stabilizes the second mode, unlike the
full cooling. Additionally, the local heating shifted the transition
upstream in their experiment.
Zhao et al. [37] numerically investigated the effect of local cooling/

heating on the synchronization point. Their simulations over the flat
platewithMach 6 flow revealed local cooling leads to boundary-layer
thickness change; as a result, the position of the synchronization
points moves at a specific frequency. One notable finding from the
study is that a second synchronization point is formed when the
cooling strip is located downstream of the adiabatic case’s neutral
point location. Recently, Batista and Kuehl [38] investigated the
combination of both heating and cooling strips numerically. They
used Purdue University’s flared cone geometry [39] at Mach 6 flow
conditions. Their findings indicate that the most effective way to
stabilize the hypersonic boundary layer is to place a cooling strip
upstream and to place a heating strip downstream.
In the present study, the aim is to apply both local and full cooling

to investigate and compare the effect of the local coolingwith various
cooling profiles and full cooling on the hypersonic boundary-layer
stability. A 5 deg half-angle cone with R � 0.0254 mm (0.001 in.)
nose bluntness is used at a freestreamMach number ofM � 6with a
cooling strip. The steady flow was solved by a compressible Navier–
Stokes solver code that uses the fifth-order-accurate weighted essen-
tially nonoscillatory (WENO) scheme [40] for spatial discretization
and a third-order total variation diminishing (TVD) Runge–Kutta
scheme [41] for time integration. Linear stability theory was then
applied to the steady flow solution. The cooling process was imposed
with different profiles and temperatures.

II. Governing Equations

A. Steady Flow

The equations solved are unsteady, compressible, axisymmetric
Navier–Stokes equations in conservative form, as shown in the
following:

∂Q
∂t

� ∂A
∂x

� ∂B
∂y

� ∂Av

∂x
� ∂Bv

∂y
� S (1)

where Q is the state vector, and A and B are the axial- and radial-
direction inviscid flux vectors given by

Q �

2
664

ρ
ρu
ρv
ρE

3
775; A �

2
664

ρu
ρu2 � p
ρuv

�ρE� p�u

3
775; B �

2
664

ρv
ρvu

ρv2 � p
�ρE� p�v

3
775 (2)

Av and Bv are the axial- and radial-direction viscous and heat con-
duction flux vectors given by

Av �

2
664

0

τxx
τxy

uτxx � vτxy − qx

3
775; Bv �

2
664

0

τyx
τyy

uτyx � vτyy − qy

3
775 (3)

The vector S contains source terms resulting from the axisymmet-
ric formulation. The source term, viscous stresses, and heat fluxes
have the following forms:

S � 1

y

8>>><
>>>:

2
664

0

τyx
τyy − τθθ

uτyx � vτyy − qy

3
775 −

2
664

ρv
ρuv
ρv2

�ρE� p�v

3
775

9>>>=
>>>;

(4)

Fig. 1 Schematic illustration of the complex flowphysics andboundary-
layer development.
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τxx �
2

3

μ

Re

�
2
∂u
∂x

−
∂v
∂y

−
v

y

�
(5)

τyy �
2

3

μ

Re

�
2
∂v
∂y

−
∂u
∂x

−
v

y

�
(6)

τθθ �
2

3

μ

Re

�
2
v

y
−
∂u
∂x

−
∂v
∂y

�
(7)

τxy �
μ

Re

�
2
∂u
∂y

� ∂v
∂x

�
(8)

qx � −
γ

�γ − 1�PrRe
∂T
∂x

(9)

qy � −
γ

�γ − 1�PrRe
∂T
∂y

(10)

Asingularity exists along the symmetry axis of y � 0. Themethod

for the elimination of the singularity and the derivation of viscous

stresses and heat fluxes was described by Kara et al. [42].
The schematic of the computational domain is illustrated in Fig. 2.

The computational domain is two-dimensional, and the contribution

of the third direction (coming from axisymmetric formulation) is

added to the system with the source term S. Here, (x, y) represent the
two-dimensional coordinates where (u, v) are the corresponding

velocity components, ρ is the density, and p is the pressure. The total

energy E is, therefore,

E � e� u2 � v2

2
; e � cvT; p � ρRT (11)

Here, e is the molecular internal energy and T is the temperature.

The viscosity μ is computed using Sutherland’s law with no correc-

tion for low temperature, and the coefficient of conductivity is given

in terms of the Prandtl number (Pr � 0.7). The variables ρ, p, and T,
as well as the velocity, are nondimensionalized by their correspond-

ing reference variables ρ∞, p∞, and T∞, as well as
����������
RT∞

p
, respec-

tively. For computational purposes, the equations are transformed

from the physical coordinate system (x, y) to a computational curvi-

linear coordinate system (ξ, η). The calculation of the derivatives

in the transformed coordinates is reproduced from the literature

[43–45], and interested readers are encouraged to check the afore-

mentioned references for the detailed derivations. Briefly, we define

the Jacobian matrix and its inverse as follows:

J �
2
4 ∂ξ

∂x
∂ξ
∂y

∂η
∂x

∂η
∂y

3
5 �

2
4 ∂x

∂ξ
∂x
∂η

∂y
∂ξ

∂y
∂η

3
5

−1

(12)

If the inverse on the right-hand side is applied, Eq. (12) can be

written as

J �
2
4 ∂ξ

∂x
∂ξ
∂y

∂η
∂x

∂η
∂y

3
5 � 1

J�

2
4 ∂y

∂η − ∂x
∂η

− ∂y
∂ξ

∂x
∂ξ

3
5 (13)

where the Jacobian determinant J� is expressed as

J� � ∂y
∂η

∂x
∂ξ

−
∂x
∂η

∂y
∂ξ

(14)

As a result, the derivative transformations expressed in terms of
inverse metrics are

∂
∂x

� 1

J�

��
∂
∂ξ

��
∂y
∂η

�
−
�
∂
∂η

��
∂y
∂ξ

��
(15)

∂
∂y

� 1

J�

��
∂
∂η

��
∂x
∂ξ

�
−
�
∂
∂ξ

��
∂x
∂η

��
(16)

The derivatives of the physical coordinates with respect to trans-
formed coordinates are calculated using the fifth-order essentially
nonoscillatory (ENO) method. Our flow solver can import any
clustered grid in physical coordinates and calculates the correspond-
ing derivatives using the Jacobian and inverse metrics. The grid used
in this study is stretched in the η direction. The finer grid is used in the
boundary layer to capture strong gradients accurately. In the ξ direc-
tion, the grid is very fine near the nose; and it is uniform in the flat
region.Wemade the data for the computational grid and flow solution
for the adiabatic wall case publicly available in the GitHub online
database to reproduce the results. Interested readers should see the
Appendix to learnmore about the dataset. The computational domain
extends from x � −0.81 to 354mm in the axial direction, where x �
0 corresponds to tip of the blunt cone. The transformed governing
equations from the physical coordinate system (x, y) to a computa-
tional coordinate system (ξ, η) are

∂Q
∂t

� ∂A
∂ξ

� ∂B
∂η

� ∂Av

∂ξ
� ∂Bv

∂η
� S (17)

The individual components are

Q� Q

J�
; A� �∂ξ∕∂x�A��∂ξ∕∂y�B

J�
; B� �∂η∕∂x�A��∂η∕∂y�B

J�

(18)

Av �
�∂ξ∕∂x�Av � �∂ξ∕∂y�Bv

J�
; Bv �

�∂η∕∂x�Av � �∂η∕∂y�Bv

J�
;

S � S

J�
(19)

The resulting system of equations is solved with a fifth-order-
accurate weighted essentially nonoscillatory scheme in spatial dis-
cretization and a third-order-accurate total variation diminishing
Runge–Kutta (TVD-RK) method in time discretization. These
schemes solve the resultant system of equations discretely in a

Fig. 2 Schematic illustration of computational domain where (x, y) are physical coordinates and (ξ, η) are computational coordinates.
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uniform structured computational domain in which flow properties

are known at the grid nodes. The WENO scheme approximates the

spatial derivatives in a givendirection to a higher order at the nodes by

using the neighboring nodal values in that direction. The TVD-RK

scheme integrates the resulting equations in time to get the point

values as a function of time. It is relatively easier to add other

dimensions in this method because the spatial derivatives are inde-

pendent of the coordinate directions. A common behavior of the

higher-order polynomials at discontinuities is that they generally

introduce oscillatory behavior, and this oscillation increases with

the order of the approximation. These oscillations can be eliminated

or suppressed by the usage of the essentially nonoscillatory method

and the improvement of theseWENOmethods. They are achieved by

systematically adopting or selecting the stencils based on the smooth-

ness of the function, which is being approximated. Although shock-

capturing algorithms such as monotonic upstream-centered schemes

for conservation laws and ENO are robust, they are locally first-order

accurate at the shock [46]. Thismay introduce oscillations behind the

shock wave. One alternative for this problem is to use shock-fitting

methods. In this method, the shock waves are treated as a sharp

interface. Thus high-order accuracy can be obtained [47] without

spurious oscillations. However, in this paper, shock-capturing meth-

ods are used because of their robustness. The direct numerical

simulation (DNS) solver [27,42,48,49] used in the present study is

extensively validated [50] to verify that the spurious oscillations do

not exist or are negligible in the calculations.

B. Linear Stability Theory

The basic idea in the linear stability theory is to assume all physical

quantities have small disturbances that are a function of space and

time. The resultant unsteady equations of motion with the same

boundary condition are solved and the solution is investigated in

order to determine if they damp, oscillate, or diverge. In the Navier–

Stokes equations, physical quantities with mean variables and corre-

sponding disturbances can be shown as

u � �U� ~u; v � �V � ~v; w � �W � ~w

p � �P� ~p; τ � �T � ~T; ρ � �ρ� ~ρ

μ � �μ� ~μ; λ � �λ� ~λ; k � �k� ~k (20)

Because the disturbances are assumed as small, they can be

linearized; in other words, the quadratic or higher disturbance terms

and their derivatives are neglected as shown:

� ~u; ~v; ~w� � �û�y�; v̂�y�; ŵ�y��ei�αx�βz−ωt� (21)

~p � p̂�y�ei�αx�βz−ωt� (22)

~T � T̂�y�ei�αx�βz−ωt� (23)

where α and β are the wave numbers in x and z directions, respec-
tively; and ω is the angular frequency. β is only used in the test cases
to compare the results with those ofMalik [8]. In the rest of the paper

(Sec. III), β is taken as zero, which corresponds to the zero-incidence
angle disturbance. The Navier–Stokes equations along with the

boundary conditions can be represented as a system of ordinary

differential equations. The resultant system of equations is given in

Ref. [51] along with the details of the system. To solve the resultant

system, Malik’s finite difference method [8] is followed along with

the suggested boundary conditions.
The test cases that are used for the validation of the linear stability

code are described in Table 1, where the Mach number, Reynolds

number, stagnation temperature, angular frequency, and wave num-

bers are given. They correspond to various scenarios from incom-

pressible to hypersonic cases to measure the capability of the code in

varying flow conditions. It has to be noted that test conditions include

both spatial and temporal stability problems.

The solutions of the test cases are given in Table 2. The first test
case results are for the phase speed, which is defined as c � �ω∕α�.
The last test case is for the spatial stability problemwhere the result is
complex α. The rest of the test cases are for temporal stability
problems where the results are complex ω. The results showed great
agreement with the provided data. Additionally, the spatial stability
code will be validated with the DNS solutions of the Mach 6 flow.

III. Results

Previous research has shown that wall cooling and heating affect
the stability of the hypersonic boundary layer. To investigate the
effect of local wall cooling, we performed hypersonic steady flow
simulations at a freestream Mach number of 6.0 over a 5 deg half-
angle cone with a small nose bluntness (0.0254 mm), which was
described in the experimental study of Horvath et al. [52]. In their
wind-tunnel tests, the unit Reynolds number was 25.59 × 106∕m, the
freestream temperaturewas 63.3K, and the ratio of the adiabatic wall
temperature to the freestream temperature was 7.052. The baseline
adiabatic flow simulations employed the aforementioned ratio to
enforce the adiabatic wall temperature.
After obtaining the adiabatic flow, we applied entire or local wall

cooling and studied various cooling strip lengths, locations, and
temperature profiles. Table 3 summarizes all the cases considered
in this study. Figure 3 shows the cooling profiles for the 0.4 × Tad

case. In the figure, T� corresponds to the wall to adiabatic wall-
temperature ratio. The spatial length is scaled according to the strip
location as

x − xstrip;first
xstrip;last

The flat profile is obtained by forcing every point on the cooling
strip to equal the wall temperature given in Table 3. The strip is
divided into three equal pieces for the smooth flat case. The first and
last pieces are modeled using second-order polynomials, and the
middle piece is generated by forcing the wall temperature given in
Table 3. The parabolic profile is obtained by a second-order poly-
nomial, and the Gaussian profile is obtained by a Gaussian distribu-
tion function.
The baseline case is chosen to validate the accuracy of the steady

flow solution. First, we conducted a mesh independence study to
verify that the mesh resolution does not affect the numerical solu-
tions. Figure 4 shows the wall pressure distribution for two different

Table 1 Flow conditions of test cases used to validate the linear
stability codea

Test
case

Mach
number

Reynolds
number

Total temperature,
°R α β ω

1 10−6 580 500 0.179 0 ——

2 0.5 2000 500 0.1 0 ——

3 2.5 3000 600 0.06 0.1 ——

4 10.0 1000 4200 0.12 0 ——

5 4.5 1500 1100 —— 0 0.23

aThe cases are based on the test cases used in Malik’s [8] paper for the accurate

comparison.

Table 2 Real and imaginary parts of phase speed c for
test case 1; angular frequencies ω for test cases 2, 3, and 4;

and wave number α for test case 5

Test case

Present code Malik’s method [8]

Real Imaginary Real Imaginary

1 0.3641 0.0079 0.3641 0.0079
2 0.0291 0.0022 0.0291 0.0022
3 0.0367 0.0006 0.0367 0.0006
4 0.1159 0.0002 0.1159 0.0002
5 0.2534 −0.0026 0.2534 −0.0025
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grids where the number of elements in the wall-normal direction is

increased 1.7 times for the second grid. An excellent agreement is

found between the two grids. In addition, we tested the grids using an

unsteady simulation and introduced a sinusoidal disturbance wave

with a frequency of 468 kHz to the flowfield. The unsteady simu-
lations predicted the same wall pressure fluctuations for both grids.
As a result, we decided to use the 3940 × 425 grid setup for the rest of
this paper.
Next, we validated the linear stability codewith our direct numeri-

cal simulation solver [42]. In the DNS, we introduced acoustic
disturbances from the inlet boundary at F � 1.00 × 10−4 (390 kHz)

and F � 1.20 × 10−4 (468 kHz). To remain in the linear regime, the
amplitude of the forcing freestream acoustic waves was given a small

value of 1 × 10−5, which was nondimensionalized by the freestream
pressure. The acoustic field is in the form of Eq. (22). Interested
readers can refer to Refs. [50,53,54] for details of the disturbance
generation and implementation for the DNS. The dimensionless
frequency F is

F � 2πfν∞
U2

∞
(24)

where f is the dimensional frequency; and ν∞ and U∞ are the
freestream kinematic viscosity and velocity, respectively. The results
are compared in Fig. 5, and an excellent agreement is observed. In this
figure, the amplitude obtained from the LST is calculated using
A�x� � exp�N�x; F��, where N�x; F� is

N �
Z

x

x0

σ��x; F� dx (25)

Here, σ is defined as −αi, and σ� is the scaled growth rate. For the

scaling of the growth rate, the Blasius length (
����������������
νex∕Ue

p
) is used,

where x is a dimensional spatial location rather than a constant. The
dimension of x is in millimeters. Thus, the dimension of the growth
rate is one per millimeter. The integrations for N factors are done
accordingly. Figure 5 shows that our linear stability code accurately
captures the unstablewave growth rate for both frequencies. In Fig. 5,
the physical coordinate system (x, y) is used in the governing equa-
tions, and the computational curvilinear coordinate system (ξ, η) is
used in the numerical calculations. The flow parameters used in the
simulations presented in this paper are based on the cone experiments
conducted at NASALangleyResearch Center’sMach 6wind tunnels
by Horvath et al. [52].

A. Validation of Steady Flow

The steady flow is solved until it converges to machine zero
(10−11). Figure 6 illustrates the Mach contour plot around the nose
region and the entire computational domain. First, the shock angle
calculated from the steady flow data is compared with the Taylor–
Maccoll solution [55]. Both the mean flow and the Taylor–Maccoll
solution provided the same value of 10.64 deg. We should note that
the nose radius in this study is 0.0254 mm, and therefore the oblique
shock angle converges to the inviscid limit. In addition, for such a
small nose bluntness, the stabilization effect of the entropy layer is
negligible [42,56,57].
Additionally, we compared the steady flow velocity and temper-

ature profiles with similarity solutions in Fig. 7 and found an excel-
lent agreement. Here, the similarity parameter η is

η � yn����������������
νes∕Ue

p (26)

where yn is the wall-normal distance; s is the distance along the
surface of the cone; and νe andUe are the kinematic viscosity and the
velocity, respectively, at the boundary-layer edge. The velocity and
temperature are nondimensionalized with the corresponding edge
values.

B. Stability Analysis of Full Cooling

Previous studies showed that wall cooling has a stabilizing effect
on the first mode, whereas it destabilizes the second mode. To
compare the full cooling with the local cooling, the full cooling cases

Fig. 3 Profiles of temperature distributions over the cooling strip
for 0.4 × Tad case. T� corresponds to Tw∕Tad. X� corresponds to

�x − xstrip;first�∕xstrip;last.

Fig. 4 Wall pressure obtained from steady simulations using two differ-
ent stretched grids. The second grid includes 1.7 times more elements in
the wall-normal direction.

Table 3 Cooling strip and wall-temperature valuesa

Case Temperature Cooling location Cooling profile

1 1.0 × Tad Baseline — —

2 0.6 × Tad Full — —

3 0.4 × Tad Full — —

4 0.6 × Tad x � 44.08–53.49 mm Flat

5 0.4 × Tad x � 44.08–53.49 mm Flat

6 0.6 × Tad x � 44.08–53.49 mm Parabolic

7 0.4 × Tad x � 44.08–53.49 mm Parabolic

8 0.6 × Tad x � 44.08–53.49 mm Smooth flat

9 0.4 × Tad x � 44.08–53.49 mm Smooth flat

10 0.6 × Tad x � 44.08–53.49 mm Gaussian

11 0.4 × Tad x � 44.08–53.49 mm Gaussian

12 0.4 × Tad x � 44.08–120.84 mm Smooth flat

13 0.4 × Tad x � 126.21–202.97 mm Smooth flat

aFor the full wall cooling cases, the wall temperature is as given in the table.

For the local cooling cases, the cooling strip temperature is as given in the

table, and the rest of the wall is adiabatic.
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given in Table 3 are solved with the high-order, axisymmetric, and
steady Navier–Stokes solver. The resultant steady flow is used in the
predictions of the growth rates and amplifications of unstable dis-
turbances by the linear stability code. First, the wall pressure and
normalized boundary-layer thickness are plotted as a function of
spatial distance in Fig. 8. The boundary-layer thickness is scaled
with the maximum boundary-layer thickness of the baseline case.
The wall pressure is high in the nose region and reaches a constant
value as the air moves downstream. The wall cooling leads to lower
wall pressure than the baseline case. The boundary-layer thickness

decreases with thewall cooling as well. At the end of the domain, the
boundary-layer thickness of the 0.6 × Tad and 0.4 × Tad cases are
0.79 and 0.69 times lower than the baseline case, respectively.
The phase speed of the mode F and mode S disturbance waves

are given in Fig. 9a. Mode F originates from the fast acoustic
spectrum, whereas mode S originates from the slow acoustic spec-
trum [58]. For the baseline case with the dimensionless frequency

of F � 1.3 × 10−4, the two modes synchronize at the downstream
location of x � 165.822 mm. In passive hypersonic boundary-layer
control methods, such as roughness and porous wall usage, the

Fig. 5 Comparison of wall pressure fluctuation results obtained from DNS code and linear stability code for dimensionless frequencies
a) F � 1.00 × 10−4 and b) F � 1.20 × 10−4. The linear stability code captured growth rates accurately.

Fig. 6 Distribution ofMach number a) in full computation domain and b) around nose region. The computational domain includes 3940 elements in the
axial direction and 425 elements in the wall-normal direction.

Fig. 7 Validation of normalized a) velocity and b) temperature distributionwithin boundary layer with similarity solution obtained forM � 6 flowwith
freestream temperature of 63.3 K. Normalization is done with corresponding edge values.
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location of the synchronization point is crucial. Fong et al. [59,60]
showed that it is efficient to use the roughness element downstream of
the synchronization point in order to damp the disturbances.When the
roughness element is placed upstreamof the synchronization point, the
disturbances are amplified.Moreover,Wang and Zhong [61,62] stated
the importance of the synchronization point for the porous coating.
Their studies showed that porous coating can be effective when it is
placed downstream of the synchronization point. The full wall cool-
ing slows down the mode F phase speed decrements, and the syn-
chronization occurs further downstream than the baseline case. The
locations of the synchronization points are x � 206.159 mm and
x � 267.336 mm for the 0.6 × Tad and 0.4 × Tad cases, respectively.
The growth rate of the slow acoustic wave is given in Fig. 9b. The

growth rate becomes positive, and disturbances start to grow at x �
73.495 mm for the baseline case. For the full wall cooling cases, the
growth rate decreases until the phase speeds of mode F and mode S

are close. Once the phase speeds of mode F and mode S are close
enough, the growth rate starts to increase and crosses the positive side
where disturbances are amplified. The slope of the growth rate
increases with the lower wall temperatures. Additionally, the maxi-
mum growth rate reached 1.52 and 1.78 times higher values than the
baseline case for the 0.6 × Tad and 0.4 × Tad cases, respectively.
Although the growth rate is increasing and reaching higher values
than the baseline case, the maximum growth rate location moves
downstream because of the initial stabilization of the disturbances.
This trendwas observed in the previousDNS study ofKara et al. [27].
The downstream growth of instability is characterized by the N

factors, which are computed at various dimensionless frequencies.
The transition onset point can be estimated from theN-factor diagram
by defining an empirical constant that corresponds to the transitionN
value, Ntr. The location that reaches the empirical Ntr point the first
time can be predicted as the transition onset location. Figure 10 shows

Fig. 8 Distribution of a) wall pressure and b) boundary-layer thickness of steady solution for the full wall cooling cases given in Table 3. Boundary-layer
thickness is scaled with maximum boundary-layer thickness of baseline case.

Fig. 9 Spatial linear stability results of full wall cooling cases: a) phase speed c of fast and slow waves, and b) growth rate of slow wave for cases given in

Table 3. Dimensionless frequency is taken as F � 1.3 × 10−4.

Fig. 10 N-factor diagrams of full wall cooling with a) 0.4 × Tad and b) 0.6 × Tad cases. Dimensionless frequency range is between F � 1.0 × 10−4 and
F � 1.6 × 10−4, which correspond 390–625 kHz.
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theN factors in the dimensionless frequency range from F � 1.00 ×
10−4 to F � 1.60 × 10−4, which corresponds to the range of 390–

625 kHz. In this plot, theN factors are calculated by starting from the

neutral point x0 � xn. The increased growth rates of the full wall

cooling led to higher N factors than the baseline case. For a constant

frequency, full wall cooling reached 2.14 and 1.57 times higher N
values for the 0.4 × Tad and 0.6 × Tad cases, respectively. The

increase in the growth rate and the N factors agree with the previous

findings [27,63].

C. Effect of Local Cooling with a Short Strip

After the full cooling cases, a short cooling strip is placed on the

surface in between x � 44.08 mm and x � 53.49 mm. The wall

temperatures for the short strip cases are given in Table 3. For each

temperature case, four different cooling profiles are studied. The

cooling profiles are given in Fig. 3. The local wall cooling leads to
a temperature drop near the upstream boundary of the cooling strip.
The sudden temperature drop decreases the boundary-layer thickness
and the temperature; therefore, expansion waves occur at the leading
edge of the cooling strip. Around the downstream boundary of the
cooling strip, the wall temperature rises significantly and the boun-
dary-layer thickness increases. These cause compression waves
around the trailing edge of the cooling strip. Figure 11 shows the
pressure contours of the two different wall temperatures with the flat
profile. The expansion (white region) and compression (dark blue
region) waves around the cooling strip are quite noticeable for the
0.4 × Tad case (Fig. 11a).
Figure 12 shows the wall pressure distribution around the cooling

strip for varying temperatures and cooling profiles. In the rest of the
computational domain, the wall pressure is identical to the baseline
(adiabatic) case, and so only the region around the cooling strip is

Fig. 11 Variation of dimensionless pressure around cooling strip with flat cooling profile and boundary conditions for cooling strip: a) 0.4 × Tad and
b) 0.6 × Tad. Cooling strip locations are shown with a dashed box. Pressure is normalized with the freestream pressure value.

Fig. 12 Wall pressure distribution of local cooling cases with a short strip, given in Table 3 for a) flat profile, b) smooth flat profile, c) parabolic profile,
and d) Gaussian profile.
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provided. The wall cooling has a small upstream influence on the

steady flow. However, there is a strong downstream influence. The

downstream effect starts after the cooling strip, and it is carried over

approximately two strip lengths. After the downstream effect, the

wall pressure reaches the undisturbed value,which corresponds to the

wall pressure distribution of the baseline case. The wall pressure

distribution over the cooling strip is highly affected by the cooling

profile. Although the wall pressure distributions of the parabolic and

Gaussian profiles are similar to the cooling profile (Figs. 12c and

12d), the flat and smooth flat cooling profiles lead to a profile starting

with a high gradient and decreasing in the spatial distance (Figs. 12a

and 12b). Even though the wall pressure distributions over the cool-

ing strips are different for each cooling profile, the downstream effect

is similar for all profiles except the magnitude.

The negative temperature gradient in the axial direction on thewall

decreased the wall pressure drastically; in other words, when the

temperature gradient is zero, the wall-temperature profile is flat. The

wall pressure tends to increase slowly. Once the wall-temperature

gradient is positive, the wall pressure increases drastically to the

maximum point. After that point, pressure recovery starts. Figure 13

illustrates the change in the wall pressure with the wall temperature

for the 0.4 × Tad casewith the smooth flat cooling profile. For the flat

profile, there is a sharp decrease in the wall pressure around the

upstream area of the cooling strip. Other profiles do not have this

sharp decrease. This behavior was observed in Zhao et al.’s paper

[37]. The strong expansion wave forming upstream of the cooling

strip may lead to such a high gradient.

The growth rates of the local cooling cases with a short strip for a

dimensionless frequency ofF � 1.3 × 10−4 are illustrated in Fig. 14.
In the upstream region, until the cooling strip, there is not any effect

caused by the cooling strip; therefore, the growth rates coincide with

the baseline case. Over the cooling strip, the growth rate starts to

decrease. The decrease is directly related to the cooling profile. The
flat cooling profile led to the highest growth rate reduction, whereas
the Gaussian cooling profile led to the lowest. In the downstream
boundary of the cooling strip, the growth rate starts to increase; and it
reaches the baseline growth rate after approximately two strip
lengths. The growth rate increase is similar to pressure recovery.
The growth rate of the local cooling remains higher than the baseline
case for the rest of the computational domain. The maximum growth
rate is related to the maximum cooling introduced to the system. The
maximum cooling among all profiles is introduced with the flat
cooling profile, which led to the highest growth rate. The lowest
cooling is introduced with the Gaussian profile, which has the mini-
mum peak growth ratewithin the local cooling cases. One interesting
observation from the growth rate plots is that parabolic and smooth
flat profiles led to the same growth rate change for both of the cases.
This shows that the total introduced cooling is more effective than the
cooling profile. Another interesting observation is that the wall
temperature is less effective on the growth rate. Figure 15 shows
the 0.6 × Tad flat profile case and the 0.4 × Tad smooth flat profile
case. The growth rate distributions coincide with each other, except
for the small difference in the leading edge and the trailing edge of the
cooling strip. However, these small differences can be negligible for
the N factors.
The conventional eN method [64] assumes that all unstable waves

are available over the surface. The lower limit of the integration given
in Eq. (25) starts from the lower neutral branch. This assumption
provides reliable results for the adiabatic test cases. However, local
cooling has a damping effect on the disturbances before the neutral
point. Thus, the growth rate decreases because of the local cooling
strip (Fig. 14). If the integration starts from a neutral point, the
damping effect will be omitted and the N factors will be misleading.
Because the freestream values are almost same for both local cooling
and adiabatic cases up to a location close to the cooling strip,
amplitudes of the unstable wave are the same at that location for
local cooling and adiabatic cases [35]. This allows us to calculate the
N factors starting from a constant point [65]. To further illustrate the
statement, second-mode waves of all frequencies entering the boun-
dary layer will be excited; and the receptivity process will be com-
pleted by a constant station. It has to be noted that the freestream
values are identical. Thus, the initial amplitude of the unstable waves
is approximately the same for all frequencies at that constant location.
With these assumptions, the N factors can be calculated from that
constant point to include the initial damping coming from local
cooling [35]. It is important to state that initial damping in the
adiabatic (baseline) case is weak. However, in the local cooling case,
theremay be substantial damping.Now, the question is the location of
the starting point of the integral. We defined the location of the
starting point as x0 � 6.69 mm. The selection of the starting point
is defined by the point where the initial amplitude of the disturbances
is almost identical for different frequencies. In other words, the
aforementioned location of the receptivity process is completed. To
visually illustrate the idea, theN factors will be calculated from x0 �
6.69 mm and x0 � xn to show the discrepancy between DNS and

Fig. 13 Distribution of wall pressure andwall temperature over cooling
strip for 0.4 × Tad case with smooth flat cooling profile.

Fig. 14 Scaled growth rates of local cooling with a short strip for dimensionless frequencyF � 1.3 × 10−4, where strip temperatures are a) 0.4 × Tad and
b) 0.6 × Tad. Growth rate is scaled with the Blasius length.
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LST. However, in the short strip case, the amplitudes of local cooling

and the baseline cases are so close to each other. Thus, we postpone

the illustration of the assumption to the next subsection (Sec. III.D)

for a more emphasized illustration. In this subsection, the N factors

will be calculated from x0 � 6.69 mm. To evaluate the idea and

verify that LST provides accurate results for local cooling cases,

we performed a DNS and introduced disturbances from the inlet with

a frequency of F � 1.3 × 10−4 and an amplitude of 1 × 10−5 for the
baseline and cooling cases; the rest of the properties of the disturb-

ance are identical to the one used in LST validation (Fig. 5). We

compared the DNS and LST results and observed an excellent agree-

ment, as shown in Fig. 16. The figure illustrates that the growth rate

of the instabilities is captured with great accuracy in the region

of x > 100 mm. However, LST overpredicted the wall pressure

upstream of this region. The discrepancy between LST and DNS is

due to nonparallel flow near the nose region. Other researchers
[37,50,48,66] also observed a similar phenomenon. Additionally, it
has to be noted that the initial amplitudes of LST solutions are
arbitrary because the receptivity is not considered [35]. In the follow-
ing subsection, we will compare the results from LST and DNS for
different cooling strip lengths.
The N factors are calculated from the growth rate for the dimen-

sionless frequency range from F � 1.0 × 10−4 to F � 1.4 × 10−4,
which corresponds to 390–546 kHz. Figure 17 shows the N factors
for the 0.4 × Tad case for flat, smooth flat, and Gaussian profiles. The
parabolic profile is not included because theN-factor diagrams were
identical to the smooth flat results. The results given in Fig. 17 show
that the local coolingwith a short strip has a small stabilizing effect on
the N-factor diagrams. The difference between flat cooling and the
baseline case is slightly more distinguishable than the others
(Fig. 17a). However, the Gaussian profile’s N-factor plots almost
coincide with the baseline case (Fig. 17c).

D. Effect of Local Cooling with a Long Strip

The local cooling with a short strip showed that the disturbances
can be dampedwith a local cooling. However, dampingwas small for
the short strip. In this subsection, the first point of the strip kept was
constant and the length of the strip extended to 120.28 mm. For
comparison purposes, simulations with the extended strip are limited
to the smooth flat profile, which gives slightly higher stabilization
than the Gaussian profile and slightly less stabilization than the flat
profile. It has to be noted that the smooth flat profile growth rate
development and the N-factor diagrams were identical to the para-
bolic profile.
Initially, the growth rate of the extended strip was calculated.

Figure 18 shows the growth rate of the baseline case of local cooling
with a short strip and a long strip, where the wall temperature on the
strip is 0.4 × Tad and the dimensionless frequency isF � 1.3 × 10−4.
The longer strip led to higher stabilization than the short strip over the
cooling region. In the short strip case, the decrease in the growth rate
lasts over the entire strip length. However, for the long strip case, the

Fig. 15 Scaled growth rates of local cooling with a short strip for 0.6 ×
Tad flat profile case and 0.4 × Tad smooth flat profile case, where the

dimensionless frequency is F � 1.3 × 10−4.

Fig. 16 Comparison of DNSwith LST of baseline, flat cooling, and smooth flat cooling cases, where wall pressure distribution (left) and the same plot in
the logarithmic axis (right) are given. Both figures share the same legend. The location of the cooling strips is in the range x � 44.08–53.49 mm.

Fig. 17 N-factor diagrams of local cooling cases with a) flat profile, b) smooth flat profile, and c) Gaussian profile. Dimensionless frequency range from

F � 1.0 × 10−4 to F � 1.4 × 10−4.
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growth rate started to increase at x � 90.38 mm. This point is close
to where thewall temperature is rising due to the cooling profile. The
increase in thewall temperature led to an increase in thewall pressure.
Moreover, the growth rate started to increase with the pressure and
temperature. Another reason for the high increase in the growth rate is
the synchronization point. The energy transfer between fast and slow
acoustic waves leads to an increase in the growth rate for the slow
acoustic wave because the fast acoustic wave transfers energy to the
slow acoustic wave. Eventually, the maximum growth rate increases
drastically for the long strip with the help of pressure recovery.
Additionally, the growth rate remains higher than the baseline case
for the rest of the computational domain.

The disturbance wave is initially damped by the cooling strip;
however, the maximum growth rate is 1.43 times higher than the
baseline maximum growth rate. The overall stabilization/destabiliza-
tion effect can be observed from the N factors. However, first, to
evaluate the accuracy of LST with the long strip, we will present the
validation of LST using DNS results for different cooling strip lengths.
It has to be noted that theN factor used in amplitude estimation for LST
is calculated from the constant location. We performed the DNSs for
cases 1, 9, and 12, given in Table 3 using a nondimensional disturbance

frequency of F � 1.3 × 10−4. Figure 19 shows the comparison of the
LSTandDNS results for the baseline, short strip, and long strip cooling
cases. The properties of the disturbance are identical to the ones used in
LST validation (Fig. 5), except the frequency of the disturbance. We
scaled theLSTresult tomatch theDNS result for the baseline case at the
maximum wall pressure location, and we used the same scaling factor
for the local cooling cases. The results show an excellent agreement
after x � 100 mm for the short strip and baseline cases, as observed in
Fig. 16.However, for the long strip case, the locationwhere theLSTand
DNS results match moved further downstream to x � 140 mm. The
reason for the increased length is the nonparallel effects over the cooling
strip. We conclude that LST provides a reasonable estimate after the
longer cooling strip, which ends at 120.28 mm. Thus, the N factors
calculated from the LST analysis provide a comparative estimation to
understand the cooling strip’s effect as comparedwith the baseline case.
Initially, the N factors are calculated starting from a neutral point

[x0 � xn in Eq. (25)] for both the baseline (adiabatic) and long
cooling strip cases. The dimensionless frequency range is in between

F � 1.00 × 10−4 and F � 1.40 × 10−4. The corresponding dimen-
sional frequencies are between 390 and 546 kHz. The results are
given in Fig. 20a. N-factor diagrams show that local cooling desta-
bilized the flow. In other words, higherN values are reached by local
cooling for every frequency within the test cases. However, DNS
results (Fig. 19) show that the pressure perturbations on the wall are

Fig. 18 Scaled growth rate comparison of baseline, short strip, and long
strip cases, with strip temperature of 0.4 × Tad. Dimensionless frequency

is taken as F � 1.3 × 10−4.

Fig. 19 ComparisonofDNSwithLST for baseline, short strip, and long strip cooling cases, wherewall pressure distribution (left) and the sameplot in the
logarithmic axis (right) are given. Location of the short cooling strip is in the range x � 44.08–53.49 mm, whereas the location of the long strip is in the
range x � 44.08–120.84 mm.

Fig. 20 N-factor diagrams calculated from a) neutral point (x0 � xn), and b) the constant point (x0 � 6.69 mm). Cases are baseline and local cooling
with a long strip, where wall cooling is 0.4 × Tad and the cooling profile is smooth flat.
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significantly reduced by the local cooling. The discrepancy between
the N factors and DNS is due to the damping effect between x0 �
6.69 mm and x0 � xn. Because of the aforementioned reasons and
assumptions (in Sec. III.C), calculating theN factors from a constant
point (x0 � 6.69 mm) will lead to better accuracy when the results
are compared with the DNS.
Figure 20b gives theN-factor diagrams of the baseline case and the

local coolingwith a long strip for the dimensionless frequencies from

F � 1.00 × 10−4 to F � 1.40 × 10−4. The corresponding dimen-
sional frequencies are in between 390 and 546 kHz. However, this
time, the N factors are calculated from x0 � 6.69 mm instead of
x0 � xn. The N factors show that local cooling with a longer strip
decreases the N values 0.86 times when compared with the baseline
case. The results showed that the strip length is a parameter for the
disturbance wave damping. A short strip slightly stabilized the
boundary layer (Fig. 17); however, a longer strip highly stabilized
the boundary layer. The limit for the stabilization is the synchroniza-
tion point. In all of the aforementioned cases, the cooling strip is
located upstream of the synchronization points for each of the
considered frequencies. The synchronization point is crucial in
hypersonic boundary-layer transition. To investigate the effect of
the synchronization point, the cooling strip will be placed down-
stream of the synchronization point.

E. Effect of Synchronization Point

The synchronization point is crucial in passive hypersonic boun-
dary-layer transition control methods. In the hypersonic boundary
layer, generally speaking, the fast mode transfers energy to the slow
mode, and the slow acoustic disturbances grow. A passive boundary-
layer transition control method may severely contribute to this proc-
ess by decreasing or increasing the amplitude growth. One example
for this phenomenon is the location of the roughness element relative
to the synchronization point. To damp the disturbance waves, the
roughness element has to be located downstream of the synchroniza-
tion point. Otherwise, it amplifies the disturbances. To investigate
the effect of the location of the cooling strip relative to the synchro-
nization point, the cooling strip is placed further downstream at
x � 126.21–202.97 mm. The synchronization point tends to move
upstream with increasing frequency. The new location of the cooling
strip will guarantee that synchronization points of a wider frequency
range will be upstream of the cooling strip. Figure 21 shows
the growth rate of the baseline along with the local cooling from
x � 44.08 mm to x � 120.84 mm and x � 126.21 mm to x �
202.97 mm. Both of the cooling strips use the smooth flat profile,
and the wall temperature on the cooling strip is 0.4 × Tad. The

dimensionless frequency is F � 1.60 × 10−4. For the baseline case,
the amplitude of the disturbance wave decreases until x � 53.6 mm.
After this point, the growth rate crosses to the positive side, and the
amplitude of the disturbances starts to increase. The growth rate

increases until x � 99.2 mm with the help of the energy transfer
from the fast acoustic wave. For the baseline case, the synchroniza-
tion point is calculated as x � 111.09 mm. The cooling strip placed
in between x � 44.08 mm and x � 120.84 mm damps the ampli-
tude of the disturbances. The growth rate crosses the positive side at
x � 102.1 mm for the strip at x � 44.08–120.84 mm. However, the
maximum growth rate location is shifted downstream, and the mag-
nitude of it is 1.72 times higher than the baseline case. Once the
growth rate reaches the maximum point, it starts to decrease. On the
other hand, when the cooling strip is placed downstream of the
synchronization point, the growth rate increases up to the peak point
of the baseline case. Additionally, the damping effect is reversed in
this case, and the local cooling initially amplified the disturbances;
after that, it started to damp. Because the growth rate is amplified in
the positive region, the amplitudes of the disturbances are further
increased by the cooling strip. This behavior is a completely reversed
version of the other cases investigated in this paper.
The effect of the location of the cooling strip with respect to

the synchronization point can be seen from the N-factor diagram.
Figure 22 shows the N-factor diagrams of the local cooling of case
13, given in Table 3 in the dimensionless frequency range from

1.00 × 10−4 to 1.60 × 10−4. The corresponding dimensional
frequencies are in between 390 kHz and 625 kHz. The local cooling

increases theN factors up to 1.5 times in the range of 1.45 × 10−4 to

1.60 × 10−4. In this frequency range, the synchronization point is
located upstream; as a result, the effect of the local cooling is
reversed, as is shown in Fig. 21. As the frequency decreases, the
synchronization point moves downstream. Once the synchroniza-
tion point appears downstream of the cooling strip, the N factors
remain lower than the baseline case.

IV. Conclusions

Full and local cooling are applied to a 5 deg half-angle blunt cone
with a 0.0254 mm nose radius to investigate the boundary-layer
stabilization of the wall cooling. The steady flow of hypersonic
boundary layers is numerically investigated at a freestream Mach
number of 6.0 and at a Reynolds number of 25.59 × 106∕m. The
steady solution is obtained by solving compressible Navier–Stokes
equations using the fifth-order-accurate WENO scheme for spatial
discretization and a third-order TVD Runge–Kutta scheme for time
integration. The growth rates, phase speeds, and N-factor diagrams
are calculated with a linear stability code. The computations are
initially performed for the adiabatic case, which is used as the base-
line case. Then, full wall cooling is introduced to the computational
domain with two different wall temperatures: 0.6 × Tad and
0.4 × Tad. The linear stability analysis of the full wall cooling for

the dimensionless frequency of 1.3 × 10−4 shows that the synchro-
nization point moves downstream 40.3 and 101.5 mm, and the
maximum growth rate approximately increases 1.52 and 1.78 times

Fig. 21 Growth rates of baseline, local cooling from upstream of syn-

chronization point, and local cooling from downstream of the synchro-
nization point cases. The dimensionless frequency is 1.60 × 10−4, and the
temperature of the cooling strip is 0.4 × Tad.

Fig. 22 N factors of local cooling placed in betweenx � 126.21 mm and

x � 202.97 mm. The dimensionless frequency range is from 1.00 × 10−4

to 1.60 × 10−4. The temperature of the cooling strip is 0.4 × Tad.
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as compared to the baseline case for the 0.6 × Tad and 0.4 × Tad

cases, respectively. The resultant N-factor diagrams of the full wall
cooling illustrate that the maximumN values of full wall cooling are
2.14 and 1.57 times higher than the baseline case for each corre-
sponding frequency for the wall temperatures of 0.6 × Tad and
0.4 × Tad, respectively. To compare the local cooling and full cool-
ing, a cooling strip is introduced in between x � 44.08 mm and
x � 53.49 mm; and the adiabatic boundary condition is used for
the rest of the wall. Four different cooling profiles are used with
the cooling strip temperatures of 0.6 × Tad and 0.4 × Tad. The pro-
files used in the simulations are the flat, smooth flat, parabolic, and
Gaussian profiles. The results show that the parabolic profile and the
smooth flat profile lead to the same growth rate distribution. Addi-
tionally, the smooth flat profile with the 0.4 × Tad case and the flat
profile with the 0.6 × Tad case lead to the same growth rate distribu-
tion. The almost identical growth rate profiles with different temper-
atures and profiles show that total cooling is a more important
parameter than the wall temperature and profile. This phenomenon
will be addressed in the future works in detail. On the other hand,
the local cooling slightly stabilizes the boundary layer. However, the
stabilization is negligible for the short strip (x44.08–53.49 mm). To
investigate the length effect, a longer strip is introduced to the compu-
tational domain in between x � 44.08 mm and x � 120.84 mm for
the 0.4 × Tad case with the smooth flat profile. Although the maxi-
mumgrowth rate for the long strip increased 1.43 timesmore than the
baseline and short strip cases, the initial stabilization is higher than
the short strip. Therefore, the maximum N-factor value of the long
strip decreases 0.86 timesmore than the baseline case. Lastly, the new
cooling strip is introduced to the computational domain in between
x � 126.21 mm and x � 202.97 mm for the 0.4 × Tad case with a
smooth flat profile. The results show that when the synchronization
point appears upstreamof the cooling strip, the cooling strip increases
the growth rate, which leads to an up to 1.5 time increase in the
N-factor diagrams for the corresponding frequencies.

Appendix: Grid Data

The grid used in this study is shared in the GitHub online database¶

along with the density, velocity, and energy variables of the solution
file for the adiabatic casewithoutwall cooling. Thegrid consists of 64
pieces, which correspond to 64 different output files from each
parallel core. Each grid file has a 10-element-long communication
layer that is used in the communication between cores. The single file
containing all grids is not uploaded because of the size limitation of
theGitHub database. Thegrid is shared in aTecplot format alongwith
the layout files that show the density contour and the grid. The
dimensions of physical coordinates (x, y) are in millimeters, and
the solution variables are dimensionless. The nondimensionalization
is done by their corresponding freestream values.
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