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Accurate and computationally efficient simulations of Euler equations are of paramount importance in
both fundamental research and engineering applications. In this study, our main objective is to investi-
gate the efficacy and accuracy of several Riemann solvers for high-order accurate weighted essentially
non-oscillatory (WENO) reconstruction scheme as a state-of-the-art tool to study shear driven turbulence
flows. The Kelvin–Helmholtz instability occurs when a perturbation is introduced to a continuous fluid
system with a velocity shear, or where there is a velocity difference across the interface between two flu-
ids. Here, we solve a stratified Kelvin–Helmholtz instability problem to demonstrate the performance of
six different Riemann solvers’ ability to evolve a linear perturbation into a transition to nonlinear hydro-
dynamic two-dimensional turbulence. A single mode perturbation is used for our evaluations. Time evo-
lution process shows that the vortices formed from the turbulence slowly merge together since both
energy and enstrophy are simultaneously conserved in two-dimensional turbulence. Third-, fifth- and
seventh-order WENO reconstruction schemes are investigated along with the Roe, Rusanov, HLL,
FORCE, AUSM, and Marquina Riemann flux solvers at the cell interfaces resulting in 18 joint flow solvers.
Based on the numerical assessments of these solvers on various grid resolutions, it is found that the dis-
sipative character of the Riemann solver has significant effect on eddy resolving properties and turbu-
lence statistics. We further show that the order of the reconstruction scheme becomes increasingly
important for coarsening the mesh. We illustrate that higher-order schemes become more effective in
terms of the tradeoff between the accuracy and efficiency. We also demonstrate that AUSM solver pro-
vides the least amount of numerical dissipation, yet resulting in a pile-up phenomenon in energy spectra
for underresolved simulations. However, results obtained by the Roe solver agree well with the theoret-
ical energy spectrum scaling providing a marginal dissipation without showing any pile-up at a cost of
around 30% increase in computational time.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate and efficient solutions of Euler equations have been
subject to intensive research for at least five decades and many
successful numerical methods have been proposed for solving
them (e.g., see [1–12]). Euler equations are a system of
non-linear hyperbolic conservation laws that govern the dynamics
of compressible material such as gases or liquids at high pressures,
for which the effects of body forces, viscous stresses and heat flux
are neglected [13]. They are very important for many areas includ-
ing astrophysics, weather and aerospace simulations.
Astrophysical gas flows are often highly supersonic and require
correct treatment of shocks and other discontinuities (e.g., contact
discontinuities, across which the density and temperature jump
but the pressure, and tangential discontinuities, across which the
tangential velocity changes) [14]. For aeronautical applications,
accurate computations of shock and vortex dominated flows are
important for aerodynamics shape optimization and load calcula-
tions during conceptual and preliminary design phases [15,16].

Traditionally, second-order accurate numerical methods are
often preferred in solutions of Euler equations because of their
simplicity and robustness. The main deficiency of these methods
for accurate computation of vortex dominated flows is the numer-
ical diffusion of vorticity to unacceptable levels [17]. Application of
high-order methods can significantly alleviate this deficiency and
be more efficient for the problems requiring high accuracy, such
as wave propagation problems, vortex-dominated flows, large
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eddy simulations and direct numerical simulations of turbulence.
Analysis of resolution, stability, dispersion relation preservation
properties of space–time discretization schemes is an important
aspect in ensuring their appropriate applications [18–20].
According to a survey done by American Institute of Aeronautics
and Astronautics (AIAA) Computational Fluid Dynamics
Algorithm Discussion Group (CFDADG), high-order methods typi-
cally have at least third-order spatial accuracy [21]. For review of
high-order accurate methods, see [17,21–24]. A comprehensive
framework on high accuracy computing methods for fluid flows
and wave phenomena can be also found in a recent book [25].

After years of research on the methods to solve Euler equations
accurately and efficiently, now we have many choices available to
code developers or more importantly to users. Developers mostly
implement all the available methods to their code. On the other
hand, an inexperienced user with a flow problem to be solved will
feel helpless between too many choices at each stage. To analyze
the performance of these methods, several comparative studies
have been performed on various range of problems targeted for
different purposes [26–36], which can be considered as user guides
for future problems. However, these studies are invaluable for
understanding the behavior of various numerical methods for
hyperbolic conservation laws, further studies are required for a
better understanding to characterize certain features for compli-
cated flows such as dissipative behavior of the methods in large
eddy simulations [26,31,37–39].

One of the most successful state-of-the-art approaches for solv-
ing conservation laws is weighted essentially non-oscillatory
(WENO) scheme in which an adaptive stencil that adjusts to the
smoothness of the solutions is applied [40–47]. WENO schemes
can be classified as reconstruction or flux-splitting based
approaches. In the first approach, reconstructed left and right
states are determined at the cell boundaries using WENO interpo-
lation procedures, then a Riemann solver is usually used to calcu-
late fluxes through these cell boundaries. Second approach
requires a flux-splitting procedure, depending on the direction in
which the information is propagating, to obtain positive and nega-
tive fluxes at the cell centers, and then WENO interpolation proce-
dure can be used to compute both fluxes at the cell boundaries. In
this paper, we will employ a high order accurate WENO interpola-
tion procedure at three different orders (3rd, 5th, and 7th) to deter-
mine reconstructed left and right states at the cell edges. In this
framework, to evaluate the averaged flux at cell edges, six approx-
imate Riemann solvers are implemented including Rusanov
scheme, Roe scheme, Harten, Lax and van Leer (HLL) scheme,
first-order central (FORCE) scheme, advection upstream splitting
method (AUSM), and Marquina scheme.

The main contribution in this study is to examine the perfor-
mance of Riemann solvers for WENO reconstruction solvers. A par-
ticular emphasis is placed on characterizing the dissipative
behaviors of joint solvers and their effects on turbulent flow field
generated by the Kelvin–Helmholtz instability. We solve the
Kelvin–Helmholtz instability problem on a two-dimensional
Cartesian grid at three different grid resolutions (2562;5122 and
10242) using periodic boundary conditions. This problem yields a
viable computational framework for studying two-dimensional
hydrodynamic turbulence which is profoundly different from
three-dimensional turbulence due to different energy cascade
behavior, and follows the Kraichnan–Batchelor–Leith (KBL) theory
[48–50]. The physics of two-dimensional turbulence has been
elucidated substantially during the past decades by theoretical
models, intensive numerical investigations, and dedicated soap
film experiments (e.g., see [51–55]).

In the present study, six different Riemann solver were com-
bined with WENO reconstruction scheme at three different order
of accuracy. The results obtained by these joint solvers show that
the choice of Riemann solver has a significant effect on eddy
resolving properties as well as turbulent statistics. We show that
the predicted energy spectrum asymptotically converged to the

theoretical k�3 scaling as the resolution increased, which is pre-
dicted by the KBL theory for forward cascading two-dimensional
turbulence. Although most of the studies on two-dimensional
turbulence are being conducted on solving incompressible flow
equations, our results can be also considered as numerical confir-
mations to KBL theory for compressible flows.

The paper is organized as follows. The governing equations for
inviscid compressible flows are briefly introduced in Section 2.
The numerical methods are presented in Section 3 by using a
modular approach with joint WENO reconstruction schemes and
approximate Riemann solvers. The results for these joint schemes
and solvers are presented in Section 4 for solving
two-dimensional turbulence triggered by the Kelvin–Helmholtz
instability. Finally, the conclusions and some comments on the
performance of these numerical methods are summarized in
Section 5.

2. Mathematical model

The considered governing equations in this work are the
two-dimensional Euler equations written in conservative form:

@q
@t
þ @F
@x
þ @G
@y
¼ 0 ð1Þ

where

q ¼

q
qu

qv
qe

0BBB@
1CCCA; F ¼

qu
qu2 þ p

quv
quH

0BBB@
1CCCA; G ¼

qv
quv

qv2 þ p

qvH

0BBB@
1CCCA

in which

H ¼ eþ p=q; p ¼ qðc� 1Þ e� 1
2
ðu2 þ v2Þ

� �
: ð2Þ

Here, q and p are respectively the density and pressure; u and v are
horizontal and vertical components of the velocity; e and H denote
the internal energy and static enthalpy; c is the ratio of specific
heats. In two-dimensional Euler equations, the convective flux
Jacobian matrices, A ¼ @F

@q and B ¼ @G
@q, can be derived as

A ¼

0 1 0 0
/2 � u2 ð3� cÞu �ðc� 1Þv c� 1
�uv v u 0

ð/2 � HÞu H � ðc� 1Þu2 �ðc� 1Þuv cu

0BBB@
1CCCA

B ¼

0 0 1 0
�uv v u 0

/2 � v2 �ðc� 1Þu ð3� cÞv c� 1
ð/2 � HÞv �ðc� 1Þuv H � ðc� 1Þv2 cv

0BBB@
1CCCA

where /2 ¼ 1
2 ðc� 1Þðu2 þ v2Þ. Because Euler system is hyperbolic,

there exists a similarity transform

LAR ¼ K ) A ¼ RKL

SBT ¼ W ) B ¼ TWS

where K and W are respectively the diagonal matrices of the real
eigenvalues of A and B; R and T are the right eigenvector matrices,
the columns of which are the right eigenvectors of A and
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B; L ¼ R�1 and S ¼ T�1 are the left eigenvector matrices, the rows of
which are the left eigenvectors of A and B. The eigenvalue matrices
K and W are uniquely defined in the system

K ¼

u 0 0 0
0 u 0 0
0 0 uþ a 0
0 0 0 u� a

0BBB@
1CCCA; W ¼

v 0 0 0
0 v 0 0
0 0 v þ a 0
0 0 0 v � a

0BBB@
1CCCA

where a is the speed of the sound and defined as a2 ¼ cp=q. The
eigenvector matrices are defined in [36].

3. Numerical methods

In this section, we briefly describe the numerical schemes used
in our computations. The semi-discrete form of the Euler equations
given in Eq. (1) can be written as

dqi;j

dt
þ 1

Dx
Fiþ1=2;j � Fi�1=2;j
� �

þ 1
Dy

Gi;jþ1=2 � Gi;j�1=2
� �

¼ 0 ð3Þ

where qi;j is the cell averaged vector of dependant variables; Fi�1=2;j

are the fluxes at the left and right cell boundaries, and Gi;j�1=2 are the
fluxes at the bottom and top cell boundaries. Eq. (3) can be rewrit-
ten in the following form

dq
dt
¼ £ðqÞ ð4Þ

where £ðqÞ is the discrete operator representing the convective flux
terms:

£ðqÞ ¼ � 1
Dx

Fiþ1=2;j � Fi�1=2;j
� �

� 1
Dy

Gi;jþ1=2 � Gi;j�1=2
� �

: ð5Þ

Assuming that the numerical approximation for time level n is
known, the optimal third-order total variation diminishing
Runge–Kutta (TVDRK3) scheme is used to compute the numerical
approximation for time level nþ 1, after the time step Dt, which
is given as [56,57]:

qð1Þ ¼ qn þ Dt£ðqnÞ

qð2Þ ¼ 3
4

qn þ 1
4

qð1Þ þ 1
4

Dt£ðqð1ÞÞ

qnþ1 ¼ 1
3

qn þ 2
3

qð2Þ þ 2
3

Dt£ðqð2ÞÞ ð6Þ

where Dt should be computed by

Dt ¼min g
Dx

maxðjKjÞ ;g
Dy

maxðjWjÞ

� �
ð7Þ

in which maxðjKjÞ and maxðjWjÞ represents the maximum absolute
eigenvalues over the entire spatial domain at known time level.
Here, g 6 1 for numerical stability. In this study, we use g ¼ 0:5
for all the computations. The TVDRK3 scheme has been extensively
used to compute hyperbolic conservation laws (e.g., see
[36,42,43,58–62]).

In the present study, a modular framework is designed for com-
puting flux terms given by Eq. (3) in developing high-order accurate
algorithms for hyperbolic conservation laws. The third-, fifth- and
seventh-order variants of the weighted essentially non-oscillatory
(WENO) method are considered and compared for their effective-
ness and their ability to accurately compute the two-dimensional
turbulent flows driven by the Kelvin–Helmholtz instability.

3.1. WENO reconstruction schemes

In the framework of reconstruction shock capturing schemes,
for each cell, reconstructed left and right states are determined
and used to calculate fluxes at cell edges. Weighted essentially
non-oscillatory (WENO) reconstruction is widely used interpola-
tion method to construct left and right states at the cell boundaries
from the solution available at the cell centers [43]. It consists of
two basic procedures: (i) the selection of the interpolation proce-
dure to estimate the solution at the interface boundaries from
the solution available at the cell centers and (ii) the selection of
the Riemann solver to determine the flux from the reconstructed
left and right states at the cell boundaries. In the semi-discrete
form given by Eq. (3) the fluxes at the interfaces are functions of
left (bottom in y-direction) and right (top in y-direction) recon-
structed states. In the following, we will omit the spatial index
which is not in the direction of the action. We only present the
schemes showing the procedures in x-direction, however, the same
procedures are applied in y-direction.

3.1.1. WENO-3 reconstruction
The third-order WENO reconstruction can be written in the fol-

lowing form [40,41]

qL
iþ1=2 ¼ w0 �

1
2

qi�1 þ
3
2

qi

� �
þw1

1
2

qi þ
1
2

qiþ1

� �
ð8Þ

qR
i�1=2 ¼ w0

1
2

qi þ
1
2

qi�1

� �
þw1 �

1
2

qiþ1 þ
3
2

qi

� �
ð9Þ

where nonlinear weights are defined as

wk ¼
ak

a0 þ a1
; ak ¼

dk

ðbk þ �Þ
2 ; k ¼ 0;1 ð10Þ

in which the smoothness indicators are defined as

b0 ¼ ðqi � qi�1Þ
2 ð11Þ

b1 ¼ ðqiþ1 � qiÞ
2 ð12Þ

where the larger this smoothness indicator bk, the less smooth the
function q is in the candidate stencil. Therefore, if there is a discon-
tinuity in the stencil, its weight approaches to zero, and the other
stencil becomes active for reconstructing the flux. Details about
the design of the smoothness indicators have been given in Jiang
and Shu [41]. Following [41], the optimal linear weighting coeffi-
cients are d0 ¼ 1=3 and d1 ¼ 2=3 in Eq. (8), and d0 ¼ 2=3 and
d1 ¼ 1=3 in Eq. (9). It is typical to set � ¼ 10�6 for eliminating zero
denominators. In this study, WENO-3 stands for the third-order
WENO reconstruction scheme given by Eqs. (8) and (9).

3.1.2. WENO-5 reconstruction
The fifth-order WENO reconstruction for the left and right

states is given as [41,43]

qL
iþ1=2 ¼ w0

1
3

qi�2 �
7
6
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11
6

qi

� �
þw1 �

1
6

qi�1 þ
5
6

qi þ
1
3

qiþ1

� �
þw2

1
3

qi þ
5
6

qiþ1 �
1
6

qiþ2

� �
ð13Þ
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1
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qi þ
5
6
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1
6

qi�2

� �
þw1 �
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6
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3
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1
3
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6
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11
6

qi

� �
ð14Þ



Fig. 1. Initial configuration of the Kelvin–Helmholtz instability test problem in a
square periodic box whose edge has a length of L ¼ 1. The ratio of specific heats is
set to c ¼ 1:4 for all computations.
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where nonlinear weights are defined as

wk ¼
ak

a0 þ a1 þ a2
; ak ¼

dk

ðbk þ �Þ
2 ; k ¼ 0;1;2 ð15Þ

in which the smoothness indicators are defined as

b0 ¼
13
12
ðqi�2 � 2qi�1 þ qiÞ

2 þ 1
4
ðqi�2 � 4qi�1 þ 3qiÞ

2 ð16Þ

b1 ¼
13
12
ðqi�1 � 2qi þ qiþ1Þ

2 þ 1
4
ðqi�1 � qiþ1Þ

2 ð17Þ

b2 ¼
13
12
ðqi � 2qiþ1 þ qiþ2Þ

2 þ 1
4
ð3qi � 4qiþ1 þ qiþ2Þ

2 ð18Þ

Following [41], the optimal linear weighting coefficients are
d0 ¼ 1=10;d1 ¼ 3=5, and d2 ¼ 3=10 in Eq. (13), and
d0 ¼ 3=10;d1 ¼ 3=5, and d2 ¼ 1=10 in Eq. (14). Similarly, we also
set � ¼ 10�6 to avoid division by zero. In this study, WENO-5 stands
for the fifth-order WENO reconstruction scheme given by Eqs. (13)
and (14). A rigorous mathematical analysis on the essential compo-
nents of WENO schemes has been reported in [63], including anal-
ysis of the smoothness indicator along with the role of the �
parameter.

3.1.3. WENO-7 reconstruction
Reconstructed left and right states are determined by using the

seventh-order WENO scheme in the following form [64]

qL
iþ1=2 ¼ w0 �

1
4

qi�3 þ
13
12

qi�2 �
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12
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12

qi
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qi�2 �
5

12
qi�1 þ

13
12
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1
4
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þw2 �

1
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7
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7
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1
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5

12
qiþ2 þ

1
12
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� �
ð19Þ
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7
12

qi�1 �
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1
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1
4
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þw3 �

1
4

qiþ3 þ
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qiþ1 þ
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12

qi
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where nonlinear weights are defined as

wk ¼
ak

a0 þ a1 þ a2 þ a3
; ak ¼

dk

ðbk þ �Þ
2 ; k ¼ 0;1;2;3 ð21Þ

in which the smoothness indicators for the four-candidate-stencil
case are defined as [64]

b0 ¼ qi�3ð547qi�3 � 3882qi�2 þ 4642qi�1 � 1854qiÞ
þ qi�2ð7043qi�2 � 17246qi�1 þ 7042qiÞ
þ qi�1ð11003qi�1 � 9402qiÞ þ qið2107qiÞ ð22Þ

b1 ¼ qi�2ð267qi�2 � 1642qi�1 þ 1602qi � 494qiþ1Þ
þ qi�1ð2843qi�1 � 5966qi þ 1922qiþ1Þ þ qið3443qi

� 2522qiþ1Þ þ qiþ1ð547qiþ1Þ ð23Þ

b2 ¼ qi�1ð547qi�1 � 2522qi þ 1922qiþ1 � 494qiþ2Þ
þ qið3443qi � 5966qiþ1 þ 1602qiþ2Þ
þ qiþ1ð2843qiþ1 � 1642qiþ2Þ þ qiþ2ð267qiþ2Þ ð24Þ
b3 ¼ qið2107qi � 9402qiþ1 þ 7042qiþ2 � 1854qiþ3Þ
þ qiþ1ð11003qiþ1 � 17246qiþ2 þ 4642qiþ3Þ
þ qiþ2ð7043qiþ2 � 3882qiþ3Þ þ qiþ3ð547qiþ3Þ ð25Þ

Following [64], the optimal linear weights are given by
d0 ¼ 1=35; d1 ¼ 12=35;d2 ¼ 18=35, and d3 ¼ 4=35 in Eq. (19), and
d0 ¼ 4=35; d1 ¼ 18=35;d2 ¼ 12=35, and d3 ¼ 1=35 in Eq. (20).
Following [41], � is taken as 10�6 in all cases. In this study,
WENO-7 stands for the seventh-order WENO reconstruction
scheme given by Eqs. (19) and (20).

3.2. Riemann solvers

After reconstructed left and right states are determined at cell
edges by using WENO reconstruction procedures, Riemann solvers
are adopted to calculate fluxes at these cell boundaries. In this
study, we focus on the use of six different Riemann solvers and
evaluate their performances through numerical experiments in
various resolutions.

3.2.1. Rusanov scheme
Once left and right states are reconstructed the fluxes can be

determined based on the maximum local wave propagation speed,
Rusanov solver follows [65]

Fiþ1=2 ¼
1
2

FR þ FL
� �

� ciþ1=2

2
qR

iþ1=2 � qL
iþ1=2

� �
ð26Þ

where FR is the flux component using the right reconstructed state,
FR ¼ FðqR

iþ1=2Þ, and FL is the flux component using the left recon-

structed state, FL ¼ FðqL
iþ1=2Þ, and ciþ1=2 is the local wave propagation

speed which is the maximum absolute value of the eigenvalues cor-
responding to the Jacobian matrix of F between cells i and iþ 1
given by

ciþ1=2 ¼max rðAiÞ; rðAiþ1Þð Þ ð27Þ

where rðAÞ represents the spectral radius of convective Jacobian
matrix A. For the case of Euler equations, it can be simply written
as rðAÞ ¼maxðjuj; ju� aj; juþ ajÞ. Thus, the wave propagation speed
can be rewritten in the following form
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ciþ1=2 ¼max juji; ju� aji; juþ aji; jujiþ1; ju� ajiþ1; juþ ajiþ1

� �
ð28Þ

The above flux calculation is sometimes referred to as local Lax–
Friedrichs flux [1,13,66]. There are other possibilities for estimating
the wave propagation speed [36].
3.2.2. Roe scheme
According to the Gudunov theorem [2], for a hyperbolic system

of equations, if the Jacobian matrix of the flux vector is constant
(a) WENO-3 (2562) (b) WENO-

(d) WENO-5 (2562) (e) WENO-5

(g) WENO-7 (2562) (h) WENO-

Fig. 2. Density contour plots at time t ¼ 1 for the grid dependence
(i.e., if A is constant), the exact values of fluxes at the interfaces
can be computed by

Fiþ1=2 ¼
1
2

FR þ FL
� �

� 1
2

RjKjL qR
iþ1=2 � qL

iþ1=2

� �
ð29Þ

where jKj is the diagonal matrix consisted of the absolute values of
eigenvalues. In the system of Euler equations, however, the Jacobian
matrix A is not constant (i.e., A ¼ AðqÞ). The Roe solver [3], is an
approximate Riemann solver based around the Godunov scheme
3 (5122) (c) WENO-3 (10242)

(5122) (f) WENO-5 (10242)

7 (5122) (i) WENO-7 (10242)

study performed by using Roe’s approximate Riemann solver.



(a) WENO-3 (2562) (b) WENO-3 (5122) (c) WENO-3 (10242)

(d) WENO-5 (2562) (e) WENO-5 (5122) (f) WENO-5 (10242)

(g) WENO-7 (2562) (h) WENO-7 (5122) (i) WENO-7 (10242)

Fig. 3. Density contour plots at time t ¼ 3 for the grid dependence study performed by using Roe’s approximate Riemann solver.
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and involves finding an estimate for the interface numerical flux as
follows

Fiþ1=2 ¼
1
2

FR þ FL
� �

� 1
2
eRj~KjeL qR

iþ1=2 � qL
iþ1=2

� �
ð30Þ

where the tilde represents the Roe average (i.e., a density weighted
average) between the left and right states. Specifically, the eigen-
system matrices can be computed from the density averaged values
given by
~u ¼ uR
ffiffiffiffiffiffiqR
p þ uL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ; ð31Þ

~v ¼ vR
ffiffiffiffiffiffiqR
p þ vL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ; ð32Þ

eH ¼ HR
ffiffiffiffiffiffiqR
p þ HL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ð33Þ

where the left and right states are available to us from the recon-
struction formulas given in previous sections. The Roe averaged



(a) WENO-3 (2562) (b) WENO-3 (5122) (c) WENO-3 (1024 2)

(d) WENO-5 (2562) (e) WENO-5 (5122) (f) WENO-5 (10242)

(g) WENO-7 (2562) (h) WENO-7 (5122) (i) WENO-7 (10242)

Fig. 4. Density contour plots at time t ¼ 5 for the grid dependence study performed by using Roe’s approximate Riemann solver.
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speed of sound can be computed by using the state equations given
by Eq. (2):

~a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1Þ eH � 1

2
ð~u2 þ ~v2Þ

	 
s
: ð34Þ

It is realized that the stationary expansion shocks are not dissipated
appropriately by this method. Harten [4] proposed the following
remedy to fix the entropy in the expansion shocks by replacing
the Roe averaged eigenvalues with

j~kij ¼
j~kij; if j~kijP 2e~a
~k2

i =ð4e~aÞ þ e~a; if j~kij < 2e~a

(
ð35Þ

where ~a is the speed of the sound at averaged state. Here,
~k1 ¼ ~k2 ¼ ~u; ~k3 ¼ ~uþ ~a, and ~k4 ¼ ~u� ~a are the components of the



(a) WENO-3-Rus. ( t = 1) (b) WENO-3-Rus. ( t = 3) (c) WENO-3-Rus. ( t = 5)

(d) WENO-5-Rus.( t = 1) (e) WENO-5-Rus. ( t = 3) (f) WENO-5-Rus. ( t = 5)

(g) WENO-7-Rus. ( t = 1) (h) WENO-7-Rus. ( t = 3) (i) WENO-7-Rus. ( t = 5)

Fig. 5. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the Rusanov Riemann solver on a resolution of 10242.
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diagonal matrix K. Here, e is a small positive number and is typi-
cally chosen as e ¼ 0:1 in our computations.

3.2.3. HLL scheme
Another vastly used approximate Riemann solver is due to

Harten et al. [67]. They assumed that lower and upper bounds on
the characteristics speeds can be used in the solution of Riemann
problem involving the right and left states. In practice [13,68,69],
these bounds are often approximated by

SL ¼ minðuL;uRÞ �maxðaL; aRÞ ð36Þ
SR ¼ maxðuL;uRÞ þmaxðaL; aRÞ ð37Þ
where SL and SR are lower and upper bounds on the left and right
state characteristics speeds. The HLL approximate Riemann solver
takes the form

Fiþ1=2 ¼
FL; if SL P 0
FR; if SR 6 0
SRFL�SLFRþSLSRðqR

iþ1=2
�qL

iþ1=2
Þ

SR�SL
; otherwise:

8>><>>: ð38Þ
3.2.4. FORCE scheme
The first order centered (FORCE) scheme is obtained by averag-

ing the Lax–Friedrichs and Richtrmyer flux schemes [13,70,71]. In



(a) WENO-3-Roe (t = 1) (b) WENO-3-Roe ( t = 3) (c) WENO-3-Roe ( t = 5)

(d) WENO-5-Roe ( t = 1) (e) WENO-5-Roe ( t = 3) (f) WENO-5-Roe ( t = 5)

(g) WENO-7-Roe ( t = 1) (h) WENO-7-Roe ( t = 3) (i) WENO-7-Roe ( t = 5)

Fig. 6. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the Roe Riemann solver on a resolution of 10242.
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the Lax–Friedrichs scheme, the numerical flux at the interface
becomes

FLF
iþ1=2 ¼

1
2
ðFR þ FLÞ � Dx

Dt
ðqR

iþ1=2 � qL
iþ1=2Þ

� �
ð39Þ

and the Richtrmyer flux can be computed by using the intermediate
conservative quantities given by

qRI
iþ1=2 ¼

1
2
ðqR

iþ1=2 þ qL
iþ1=2Þ �

Dt
Dx
ðFR � FLÞ

� �
; FRI

iþ1=2 ¼ FðqRI
iþ1=2Þ

ð40Þ

and finally the FORCE flux is
Fiþ1=2 ¼
1
2

FLF
iþ1=2 þ FRI

iþ1=2

� �
: ð41Þ
3.2.5. AUSM scheme
The AUSM was proposed by Liou and Steffen [72] and stands for

Advection Upstream Splitting Method. It was motivated to provide
an alternative approach to low-diffusion flux-splitting methods
by recognizing that the inviscid flux consist of two physically dis-
tinct parts (i.e., convective and pressure fluxes). A cell-interface
advection Mach number is appropriately defined to determine
convective flow quantities. Many variants of the AUSM have been
proposed to yield a more accurate and robust version in all-speed



(a) WENO-3-HLL ( t = 1) (b) WENO-3-HLL ( t = 3) (c) WENO-3-HLL ( t = 5)

(d) WENO-5-HLL ( t = 1) (e) WENO-5-HLL (t = 3) (f) WENO-5-HLL ( t = 5)

(g) WENO-7-HLL ( t = 1) (h) WENO-7-HLL ( t = 3) (i) WENO-7-HLL ( t = 5)

Fig. 7. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the HLL Riemann solver on a resolution of 10242.
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regimes [73–78]. Here, we use the AUSM as a low-diffusion
Riemann solver between the right and left reconstructed states
yielding the interface numerical flux as

Fiþ1=2 ¼
Miþ1=2

2

qa
qau
qav
qaH

0BB@
1CCA

L

þ

qa
qau
qav
qaH

0BB@
1CCA

R

2664
3775

� jMiþ1=2j
2

qa
qau
qav
qaH

0BB@
1CCA

R

�

qa
qau
qav
qaH

0BB@
1CCA

L

2664
3775þ

0
pþL þ p�R

0
0

0BB@
1CCA

ð42Þ
where

Miþ1=2 ¼ Mþ
L þM�

R ð43Þ

in which the directional convective Mach number (i.e., M ¼ u=a in
x-direction) is given as

M� ¼ � 1
4 ðM � 1Þ2; if jMj 6 1

1
2 ðM � jMjÞ; otherwise

(
ð44Þ

and we use the following split formula for the pressure,



(a) WENO-3-FORCE ( t = 1) (b) WENO-3-FORCE ( t = 3) (c) WENO-3-FORCE ( t = 5)

(d) WENO-5-FORCE ( t = 1) (e) WENO-5-FORCE ( t = 3) (f) WENO-5-FORCE ( t = 5)

(g) WENO-7-FORCE ( t = 1) (h) WENO-7-FORCE ( t = 3) (i) WENO-7-FORCE ( t = 5)

Fig. 8. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the FORCE Riemann solver on a resolution of 10242.
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p� ¼ p 1
4 ðM � 1Þ2ð2�MÞ; if jMj 6 1

p 1
2 ðM � jMjÞ=M; otherwise:

(
ð45Þ
3.2.6. Marquina scheme
To compute the numerical flux at a cell interface we include the

following characteristic-based scheme in our comparisons [79,80];

Fiþ1=2 ¼ ½R�Lf/þg þ ½R�Rf/�g ð46Þ

where ½R�R;L is the right eigenvector matrix computed from the right
or left reconstructed state variables. To compute f/�g Marquina
scheme follows:
For k ¼ 1; . . . ;4
if signð1; kL

kk
R
kÞ ¼ 1 then

if kL
k > 0 then

/þk ¼ /L
k, and /�k ¼ 0

else
/þk ¼ 0, and /�k ¼ /R

k

end if
else

ak ¼maxðjkL
kj; jk

R
k jÞ

/þk ¼ 1
2 ð/

L
k þ akxL

kÞ
/�k ¼ 1

2 ð/
R
k � akxR

kÞ
end if



(a) WENO-3-AUSM ( t = 1) (b) WENO-3-AUSM ( t = 3) (c) WENO-3-AUSM ( t = 5)

(d) WENO-5-AUSM ( t = 1) (e) WENO-5-AUSM ( t = 3) (f) WENO-5-AUSM ( t = 5)

(g) WENO-7-AUSM ( t = 1) (h) WENO-7-AUSM ( t = 3) (i) WENO-7-AUSM ( t = 5)

Fig. 9. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the AUSM Riemann solver on a resolution of 10242.
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where /k and xk at the left and right states can easily be computed

by projecting the left eigenvector matrix ½L� onto flux and conserva-
tive variable vectors, i.e., f/gR;L ¼ ½L�R;LfFgR;L and fxgR;L ¼ ½L�R;LfqgR;L.
Here, sign(a, b) returns the value of a with the sign of b.
The eigenvector matrices (i.e., ½R� and ½L�), are defined in [36].
4. Results

In this section, the performance of joint solvers is analyzed by
systematic comparisons for various resolutions. Numerical assess-
ments on dissipative characteristics of these solvers are presented
by simulations of the Kelvin–Helmholtz instability problem using a
single mode perturbation initial condition in two-dimensions
[81,82]. This test problem demonstrates the solvers’ ability to
evolve a linear perturbation into two-dimensional turbulence. As
a result of the relatively low diffusion of the high-order numerical
schemes, the Kelvin–Helmholtz instability triggers to generate
small-scale vortical structures at the sharp density interfaces [36]
and these vortices freely evolve with time and interact with each
other forming a two-dimensional turbulence regime. Since this
turbulence is restricted to two-dimensions, these vortices slowly
become bigger vortices with time by a vortex merging mechanism
(e.g., see [83,84]).



(a) WENO-3-Mar. (t = 1) (b) WENO-3-Mar. (t = 3) (c) WENO-3-Mar. (t = 5)

(d) WENO-5-Mar. (t = 1) (e) WENO-5-Mar. (t = 3) (f) WENO-5-Mar. (t = 5)

(g) WENO-7-Mar. (t = 1) (h) WENO-7-Mar. (t = 3) (i) WENO-7-Mar. (t = 5)

Fig. 10. Time evolution of the density field for the Kelvin–Helmholtz instability problem by using the Marquina Riemann solver on a resolution of 10242.
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Fig. 1 describes initial conditions for the Kelvin–Helmholtz
instability problem. The computational domain is a square box
with sides of length L ¼ 1. Periodic boundary conditions are
applied in both directions. Initial pressure is given as p ¼ 2:5 every-
where. The ratio of specific heats is set to c ¼ 1:4 for all computa-
tions. Initially, density and the horizontal component of the
velocity values are set to q ¼ 1 and u ¼ 0:5 in the outer region
jyjP 0:25;q ¼ 2 and u ¼ �0:5 in the inner region jyj < 0:25,
respectively. We perturb the vertical component of velocity by
using a single mode perturbation, which the perturbation is a sine
wave with one wavelength in the x dimension. The amplitude of
the perturbation is set to d ¼ 0:01. All numerical experiments con-
ducted here are solved for a maximum dimensionless time of t ¼ 5.
Similar configuration for the Kelvin–Helmholtz instability problem
has been also presented in the Athena code hydrodynamics test
suite developed by Stone et al. [85].

We evaluate the performance of the joint solvers by performing
computations for three different equally-spaced Cartesian meshes
with spatial resolutions of 2562;5122, and 10242. Comparing the
third-, fifth- and seventh-order WENO schemes, Figs. 2–4 illustrate
the density fields on these resolutions by using Roe’s approximate
Riemann solver at time instants t ¼ 1; t ¼ 3, and t ¼ 5, respectively.



(a) Rusanov (b) Roe

(c) HLL (d) FORCE

(e) AUSM (f) Marquina

Fig. 11. Time histories of total energy EðtÞ for solving the Kelvin–Helmholtz instability by using various Riemann flux formulas on a resolution of 10242.

(a) Rusanov (b) Roe

(c) HLL (d) FORCE

(e) AUSM (f) Marquina

Fig. 12. Zoomed view of time histories of total energy EðtÞ for solving the Kelvin–Helmholtz instability by using various Riemann flux formulas on a resolution of 10242.
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Fig. 14. Comparison of the angle averaged energy spectrum computed by the
WENO-5 reconstruction scheme equipped with various Riemann flux formulas at
time t ¼ 5. The angle averaged energy spectrum in the inertial range flattens
towards the classical k�3 scaling, in agreement with the KBL theory of two-
dimensional turbulence.
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It can be seen that the higher-order formulations provide much
better resolving property than that of the lower-order formula-
tions. The small scale vortical structures are generated and cap-
tured by the fifth- and seventh-order WENO schemes yielding
two-dimensional turbulence with time. As we can see, a filamenta-
tion process occurs, generated small scale vortices triggered by the
Kelvin–Helmholtz initially at discontinuous interfaces start to
interact with each other and become bigger vortices with time
by a vortex merging mechanism. However, the degree of filamen-
tation is bigger for both higher resolution and higher reconstruc-
tion of the WENO scheme.

Next, we present results obtained by sixth different Riemann
solvers explained in Section 3.2. Fig. 5 shows the evolution of den-
sity field for various order reconstruction WENO schemes by using
the Rusanov scheme. Similar comparisons are plotted in Fig. 6 for
the Roe scheme; in Fig. 7 for the HLL scheme; in Fig. 8 for the
FORCE scheme; in Fig. 9 for the AUSM scheme; and Fig. 10 for
the Marquina scheme. Among them the FORCE Riemann solver
seems to be most dissipative. The most accurate results are
obtained with the Roe and AUSM Riemann solvers, followed by
the HLL, Rusanov and Marquina solvers. We also note that there
is no significant difference between FORCE, HLL, Rusanov and
Marquina solvers due to high numerical damping. However, Roe
and AUSM scheme provide less numerical dissipation yielding
more filamentation processes. We demonstrate that the results
highly depend on the selection of the Riemann solver as well as
the degree of the numerical reconstruction in which higher-order
schemes generates less numerical dissipation.

In addition to these density field plots, we also present the time
histories of total energy EðtÞ ¼ 1

2 ðu2 þ v2Þ in order to quantify the
dissipative characteristics of the joint solvers. Fig. 11 shows EðtÞ
in log–log graphs for the Riemann solvers tested in this study.
The close-up representations in initial times are also illustrated
in Fig. 12. Among the Riemann solvers considered, the AUSM
scheme yields the most accurate results showing the least amount
of numerical dissipation, although the Roe scheme also produces
accurate results without excessive dissipation. FORCE scheme
produces overly-dissipative results followed by HLL, Rusanov and
Marquina schemes. It can be seen that order of the reconstruction
Fig. 13. Comparison of the angle averaged energy spectrum computed by the
WENO-3 reconstruction scheme equipped with various Riemann flux formulas at
time t ¼ 5. The angle averaged energy spectrum in the inertial range flattens
towards the classical k�3 scaling, in agreement with the KBL theory of two-
dimensional turbulence.
scheme has crucial effects on dissipative behavior. Although the
most accurate results are obtained with the seventh-order WENO
reconstruction, the fifth-order reconstruction also yields similar
results which are considerably more accurate than those of
obtained by the third-order reconstruction scheme.

In order to examine the characteristics of two-dimensional
turbulence we compute the energy spectrum in wave space using
fast Fourier transform (i.e., see [83] for more details). It is known
from the KBL theory that the energy spectrum in the inertial range

approaches the classical k�3 scaling. Figs. 13–15, show energy
spectra computed by the WENO-3, WENO-5, and WENO-7
Fig. 15. Comparison of the angle averaged energy spectrum computed by the
WENO-7 reconstruction scheme equipped with various Riemann flux formulas at
time t ¼ 5. The angle averaged energy spectrum in the inertial range flattens
towards the classical k�3 scaling, in agreement with the KBL theory of two-
dimensional turbulence.



Table 1
Energy densities and scaling exponent a of the energy spectrum EðkÞ measured at time t ¼ 5 for solving the Kelvin–Helmholtz instability problem on a resolution of 2562 using
the shock capturing schemes used in this study.

WENO-3 WENO-5 WENO-7

Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a

Rusanov 1.52E�05 1.37E�11 6.05 2.06E�04 3.51E�10 5.77 2.10E�04 2.08E�09 5.01
Roe 5.11E�05 6.19E�10 4.92 7.53E�05 7.25E�09 4.02 2.09E�04 5.41E�09 4.59
HLL 1.64E�05 1.87E�11 5.94 2.33E�04 3.85E�10 5.78 2.76E�04 1.28E�09 5.33
FORCE 1.07E�05 3.16E�12 6.53 1.20E�04 1.86E�10 5.81 2.19E�04 4.17E�10 5.72
AUSM 3.48E�05 1.22E�09 4.45 1.28E�04 3.76E�09 4.53 2.52E�04 1.48E�08 4.23
Marquina 2.56E�05 2.13E�11 6.08 1.13E�04 4.08E�10 5.44 2.25E�04 2.76E�09 4.91

Table 2
Energy densities and scaling exponent a of the energy spectrum EðkÞ measured at time t ¼ 5 for solving the Kelvin–Helmholtz instability problem on a resolution of 5122 using
the shock capturing schemes used in this study.

WENO-3 WENO-5 WENO-7

Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a

Rusanov 1.21E�04 1.69E�09 4.85 3.21E�04 1.42E�08 4.35 3.00E�04 1.06E�07 3.45
Roe 1.65E�04 2.65E�08 3.79 4.32E�04 5.90E�08 3.86 4.37E�04 1.06E�07 3.61
HLL 1.04E�04 8.24E�10 5.10 2.81E�04 1.72E�08 4.21 5.26E�04 7.84E�08 3.83
FORCE 9.79E�05 2.62E�10 5.57 2.79E�04 9.77E�09 4.46 5.05E�04 6.90E�08 3.86
AUSM 1.81E�04 8.95E�09 4.31 4.15E�04 5.65E�08 3.87 4.55E�04 1.26E�07 3.56
Marquina 1.14E�04 2.40E�09 4.68 2.79E�04 2.80E�08 4.00 4.29E�04 9.51E�08 3.65

Table 3
Energy densities and scaling exponent a of the energy spectrum EðkÞ measured at time t ¼ 5 for solving the Kelvin–Helmholtz instability problem on a resolution of 10242 using
the shock capturing schemes used in this study.

WENO-3 WENO-5 WENO-7

Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a Eð10Þ Eð100Þ a

Rusanov 2.39E�04 3.27E�08 3.86 6.73E�04 1.97E�07 3.53 4.45E�04 5.17E�07 2.94
Roe 4.51E�04 4.17E�08 4.03 4.27E�04 2.97E�07 3.16 6.34E�04 4.93E�07 3.11
HLL 1.61E�04 2.35E�08 3.84 4.40E�04 3.26E�07 3.13 7.25E�04 5.36E�07 3.13
FORCE 2.22E�04 1.51E�08 4.17 5.20E�04 1.96E�07 3.42 5.31E�04 4.53E�07 3.07
AUSM 5.02E�04 7.77E�08 3.81 4.48E�04 2.46E�07 3.26 3.97E�04 4.53E�07 2.94
Marquina 4.38E�04 2.71E�08 4.21 5.35E�04 2.96E�07 3.26 4.65E�04 5.10E�07 2.96

Table 4
The total CPU costs (in hours) for solving the Kelvin–Helmholtz instability problem at time t ¼ 1 by using various order WENO reconstruction schemes equipped with six different
Riemann solvers considered in this study.

Reconstruction Rusanov Roe HLL FORCE AUSM Marquina

2562

WENO-3 0.1695 0.2475 0.1764 0.1692 0.1854 0.2270
WENO-5 0.2396 0.3167 0.2473 0.2348 0.2557 0.2969
WENO-7 0.3590 0.4353 0.3665 0.3517 0.3863 0.4188

5122

WENO-3 1.5432 2.2436 1.7285 1.6969 1.6136 1.9997
WENO-5 2.1513 2.7588 2.1879 2.1369 2.2257 2.6726
WENO-7 3.1790 3.7677 3.1901 3.1009 3.3181 3.6927

10242

WENO-3 12.7595 17.5507 12.8741 12.8236 13.6887 16.6842
WENO-5 18.4537 22.8516 18.4003 17.7486 19.0516 22.7735
WENO-7 27.5628 34.7425 27.3946 26.6776 27.4658 31.2851
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reconstruction schemes, respectively. In these figures, the angle
averaged energy spectra are illustrated for the approximate
Riemann solvers tested in this study. More quantitative results
are tabulated in Tables 1–3, measuring the energy densities at
k ¼ 10 and k ¼ 100 as well as scaling exponents. First, we observe
that energy spectra are steeper for low resolution computations

and approaches k�3 scaling as the resolution increases. Second,
these figures demonstrate that the energy spectra converge to

k�3 scaling in the inertial range for increasing the order of the
reconstruction scheme. Intercomparisons of the Riemann solvers
clearly demonstrate that the FORCE scheme yields overly-
dissipated results, whereas the AUSM scheme results in the least
numerical dissipation. Roe scheme also performs very well without
having an excessive dissipation. There is no significant difference
among HLL, Rusanov and Marquina schemes. In the inertial range,
especially for the fifth- and seventh-order WENO reconstruction
schemes, it is also interesting to see that energy spectra scale as

k�3 and are invariant of the approximate Riemann solver used.
Having a third-order reconstruction scheme, Fig. 13 also illustrates
that a higher degree of pile-up phenomenon occurs in the energy
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spectra for all the approximate Riemann solvers except the Roe and
overly-dissipative FORCE schemes.

Finally, we present the computational efficiencies of the
schemes considered in this study. All computations were carried
out using the gfortran compiler on a Linux cluster system made
up of quad-core Intel Xeon X5355 (2.66 GHz/node). The total CPU
costs (in hours) for the third-, fifth- and seventh-order WENO
reconstruction schemes which are listed in Table 4 for various res-
olutions. Among the Riemann solvers, due to its simplicity Rusanov
solver is the most efficient one, followed by FORCE, HLL, AUSM,
Marquina and Roe solvers. Although we have not attempted any
special efforts for writing optimal code, we can conclude that
AUSM scheme is more efficient than the Roe scheme without
showing excessive numerical dissipation. We can also state that
the fifth-order WENO reconstruction is optimal one since there is
no significant difference in accuracy between the fifth-order and
seventh-order reconstructions.
5. Conclusions

Present study investigates the performance of six Riemann flux
formulas for high-order reconstruction schemes. The third-, fifth-,
and seventh-order weighted essential non-oscillatory (WENO)
schemes are used as joint solvers with the idea of adaptive stencils
to automatically achieve high order accuracy. In this framework,
reconstructed left and right states for each cell are determined
by using the WENO reconstruction procedures and used to
calculate fluxes at cell edges. Then the Riemann solver is used to
determine the flux from the reconstructed left and right states at
the cell boundaries. Six state-or-the-art Riemann flux solvers are
implemented in the current work, including Rusanov scheme,
Roe scheme, Harten–Lax–Van Leer (HLL) scheme, first-order cen-
tered (FORCE) scheme, advection upstream splitting method
(AUSM), and Marquina scheme. A systematic comparison and
evaluation of these joint solvers are presented for solving the
two-dimensional Kelvin–Helmholtz instability problem governed
by Euler equations of gas dynamics.

The Kelvin–Helmholtz instability problem on a periodic two
dimensional box is a challengingly appropriate benchmark test
for evaluating ability to evolve a linear perturbation into a transi-
tion to nonlinear hydrodynamic two-dimensional turbulence. In
fact, to be able to compare the dissipative and resolving properties
of the joint numerical solvers more precisely we restrict ourselves
to periodic boundary conditions and a uniform Cartesian grid.
Consequently, we eliminate errors coming from the mesh
non-uniformities and inconsistent boundary schemes. Initially, a
single mode perturbation is used for our evaluations. Time evolu-
tion process shows that the small-scale vortices formed from the
Kelvin–Helmholtz mechanism slowly merge together with time
since both energy and enstrophy are inviscid invariants in the
two-dimensional system.

According to the KLB theory of two-dimensional turbulence this
system has an inertial subrange in the energy spectrum that is

proportional to k�3 in the inviscid limit. The modular development
of the joints solvers in this study provides an ease in evaluating the
performance of high-order accurate WENO reconstruction schemes
and different types of Riemann flux solvers. Based on a comprehen-
sive assessment of the solutions obtained with all joint solvers on
various resolutions, we showed that the energy spectrum in the

inertial range flattens towards the classical k�3 scaling limit as
the order of the reconstruction scheme increases due to lower
numerical dissipation, in agreement with the KBL theory of
two-dimensional turbulence. It is shown that the dissipative fea-
tures of solvers affects eddy resolving properties and turbulence
statistics. Order of reconstruction scheme becomes increasingly
important for coarsening mesh. We also demonstrate the AUSM
methodology in computing Riemann fluxes at cell boundaries pro-
vides solutions with smaller numerical dissipation in all cases. We
found that Roe solver agrees with theoretical energy spectrum
with a marginal dissipation without showing a pile-up phe-
nomenon even for underresolved simulations.
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