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This paper investigates performance of extensions of the state-of-the-art high-resolution shock capturing
schemes by solving hyperbolic conservation laws in gas dynamics. Such numerical schemes used for the
integration of compressible flow simulations should provide accurate solutions for the long time integra-
tions these flows require. To this end, several joint solvers are developed within the framework of the
reconstruction and flux-splitting approaches using the underlying MUSCL and WENO frameworks. The
numerical assessments include testing and evaluation of various interpolation procedures, flux-limiters,
Riemann solvers, flux-splitting schemes as well as their formal order of accuracy. A three-stage optimal
TVD Runge–Kutta time stepping is employed for temporal integration. The modular development of these
joint solvers provides an ease in characterizing the solution procedures. The performances of these high-
resolution solvers are compared for several carefully selected two-dimensional Riemann problems
including shock and rarefaction waves as well as joint discontinuities. Based on solutions obtained by
all forms of five-point stencil schemes, we demonstrate that the reconstruction based WENO scheme
with Roe solver is more accurate than all the versions of the flux-splitting WENO solvers tested in this
study. We also show that results are highly dependent on the choice of the flux limiter. Performing
benchmark quality high-resolution computations, it is shown that the Euler equations discretized by
the fifth-order WENO scheme produce solutions which convect vorticity and create small-scale vortical
flow structures which are usually associated with the high Reynolds number viscous flows. Surprisingly,
it is found that these Kelvin–Helmholtz instability like vortical structures are not captured in any form of
the third-order five-point stencil schemes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Computational studies of compressible flow problems are
important in basic scientific research, and for a multitude of engi-
neering applications. In the decades since the first compressible
flow computations were performed, many successful shock-cap-
turing algorithms have been proposed for computing these flows
[1–6]. The holy grail is to obtain a sharp discontinuity effectively,
extending over as few grid points as possible. Terms like essentially
non-oscillatory, monotone upwind, or total variation diminishing
(TVD) are applied to various methods for capturing shocks via
some sort of numerical dissipation which is a consequence of phys-
ics that produce an upwind bias in these algorithms. This numeri-
cal dissipation can provide stability and robustness, without
significantly deteriorating accuracy.

The design of an efficient and reliable shock capturing algo-
rithm is often a challenge. The implementation of low-dissipation
centered schemes usually result in spurious Gibbs oscillations in
convection-dominated or discontinuous flows due to spectral trun-
cation in the wavenumber space. In order to prevent the appear-
ance of Gibbs oscillations in simulations of shock dominated
flows, the usual approach is to develop upwind-biased schemes
[7]. A numerical scheme must possess sufficient dissipation to cap-
ture strong shocks without developing overshoots and oscillations
in the vicinity of the discontinuity. Although several high-order
methods for computing shocks, such as monotone upwind-central
schemes for conservation laws (MUSCL) schemes making use of
flux or slope limiters and weighted essentially non-oscillatory
(WENO) schemes in which an adaptative stencil that adjusts to
the smoothness of the solutions is applied, have been developed,
none of them has yet set a standard state-of-the art. Many of these
methods are based on the detection of the shocks and on the recon-
struction of lower-order, oscillation-free, solutions on correspond-
ing cells. The reader is referred for instance to the two reviews
made by Shu [8] and Pirozzoli [9] for more details.

Such shock capturing methods can be classified as reconstruc-
tion or flux-splitting based approaches. In the first approach,
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Fig. 1. Flux limiters considered in this study.
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reconstructed left and right states are determined at cell edges
using interpolation procedures such as MUSCL or WENO recon-
structions, then a Riemann solver is usually adopted to calculate
fluxes through these cell boundaries. Approximate Riemann solv-
ers such as those developed by Roe [10] or Harten et al. (HLL)
[11] are widely used because of their numerical accuracy and
robustness. The latter approach requires a flux-splitting procedure,
depending on the direction in which the information is propagat-
ing, to obtain positive and negative fluxes at the cell centers, and
then an interpolation procedure can be used to compute both
fluxes at the cell boundaries (e.g., see [12] for WENO schemes).

As illustrated by the broad range of algorithms for the Euler
equations (as well as other systems of hyperbolic conservation
laws) in the literature over the past three decades, a number of
various strategies have been used to approximately construct the
conservative flux values, which allow accurate and robust repre-
sentation of shocks without introducing non-physical oscillations
or excessive diffusion into the solution. Analyzing the performance
of these algorithms is a challenging task because such methods are
typically verified using different benchmark problems. However,
there are several intercomparison studies targeted for different
purposes [13–18]. Liska and Wendroff [14] presented a compre-
hensive study by comparing eight shock capturing methods
(including the third-order accurate piecewise parabolic method,
the fifth-order accurate WENO method and several second-order
accurate schemes such as the positive scheme of Lax and Liu
[19]) for solving various one-dimensional and two-dimensional
test problems to draw some conclusions about the applicability
of these methods. They showed that some methods appear to work
better than others on a specific problem, but no one scheme has
shown itself to be superior at all. Based on a set of one-dimensional
test problems, Greenough and Rider [15] concluded that a second-
order Godunov type scheme provides more accuracy per computa-
tional cost than a fifth-order WENO scheme. A comprehensive
range of high-resolution methods (WENO, hybrid WENO/central
difference, artificial diffusivity, adaptive characteristic-based filter,
and shock fitting) have also been presented by Johnsen et al. [18]
for a suite of test cases relevant to problems with shocks and tur-
bulence. Their results indicated that the WENO methods provide
sharp shock profiles, but overwhelm the physical dissipation while
the shock fitting approach, where shock waves are explicitly intro-
duced in the solution using appropriate shock relations, yielded
good results. However, these studies are invaluable for better
understanding of various numerical methods for hyperbolic con-
servation laws, it is difficult to determine which method is the
most appropriate. Different than the published comparative stud-
ies described above, our comparisons here focus on the effects of
various sub-strategies to approximate the conservative fluxes by
considering several interpolation procedures, flux-limiters,
Riemann solvers and flux-splitting schemes.

In the present study, a comparative modular framework is de-
signed for developing high-order accurate shock capturing algo-
rithms. The variants of MUSCL and WENO methods are
considered and compared for their effectiveness and their ability
to accurately compute flows with strong shocks on a variety of
two-dimensional test cases. The goal of this paper is threefold:
First, it investigates the effect of several reconstruction procedures
in combination with various Riemann solvers at the cell interfaces.
Several variants of flux-limiter based MUSCL reconstruction proce-
dures are compared with the WENO reconstruction procedure
which is based on the idea of nonlinear weights with the smooth-
ness indicators. The effects of the use of different flux-limiters on
the solution accuracy are also demonstrated. Second, it compares
these reconstruction based schemes with various forms of flux-
splitting WENO schemes without using a Riemann solver at the cell
interfaces. Third, it investigates the effects of flux-splitting meth-
ods on the accuracy of the third- and fifth-order WENO schemes
for solving two-dimensional Euler equations on different resolu-
tions. The joint solvers with local Lax–Friedrichs [20], Steger and
Warming [21] and Van Leer [22] flux-splitting procedures are ap-
plied to several Riemann problems including shock and rarefaction
waves as well as contact discontinuities. Performing benchmark
quality high-resolution computations, it is serendipitously discov-
ered that the Euler equations discretized by the fifth-order WENO
scheme with all the forms of splitting methods produce solutions
that convect vorticity and create small-scale vortical flow struc-
tures which are usually associated with the high Reynolds number
viscous flows. These Kelvin–Helmholtz instability like vortical
structures are not captured or generated in any forms of the
third-order WENO or MUSCL schemes at any resolutions consid-
ered in our numerical experiments. Since the vorticity is generated
as a result of a discontinuity in the flow field, according to the
Crocco–Vazonski equations (see Thompson [23] for a derivation),
these solutions can be considered valid and accurate solutions to
the Euler equations.

The paper is organized as follows: Euler equations, the
governing equations for inviscid compressible flows, are briefly
introduced in Section 2. The numerical methods are presented in
Section 3 by using a modular approach with joint reconstruction
and flux-splitting algorithms. The results for these joint solvers
are presented in Section 4. Finally, the conclusions and some com-
ments on the performance of these schemes are summarized in
Section 5.

2. Euler equations in gas dynamics

The two-dimensional Euler equations can be represented in the
conservation form as

@q
@t
þ @F
@x
þ @G
@y
¼ 0 ð1Þ

where

q ¼

q
qu

qv
qe

0BBB@
1CCCA; F ¼

qu

qu2 þ p

quv
quH

0BBB@
1CCCA; G ¼

qv
quv

qv2 þ p

qvH

0BBB@
1CCCA

in which

H ¼ eþ p=q; p ¼ qðc� 1Þ e� 1
2
ðu2 þ v2Þ

� �
: ð2Þ
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Here, q;p; u, and v are respectively the density, pressure, horizontal
and vertical components of the velocity; e and H denote the internal
energy and static enthalpy; c is the ratio of specific heats. The eigen-
system of the equations will be used extensively in developing
numerical methods applied to the hyperbolic conservation laws.
In two-dimensional Euler equations, the convective flux Jacobian
matrices are

A ¼ @F
@q
¼

0 1 0 0

/2 � u2 ð3� cÞu �ðc� 1Þv c� 1

�uv v u 0

ð/2 � HÞu H � ðc� 1Þu2 �ðc� 1Þuv cu

0BBBBB@

1CCCCCA

B ¼ @G
@q
¼

0 0 1 0
�uv v u 0

/2 � v2 �ðc� 1Þu ð3� cÞv c� 1
ð/2 � HÞv �ðc� 1Þuv H � ðc� 1Þv2 cv

0BBB@
1CCCA

where /2 ¼ 1
2 ðc� 1Þðu2 þ v2Þ. Because this system is hyperbolic,

there exists a similarity transform, such that,

LAR ¼ K ) A ¼ RKL

SBT ¼ W ) B ¼ TWS

where K and W are respectively the diagonal matrices of the real
eigenvalues of A and B; R and T are the matrices, the columns of
which are the right eigenvectors of A and B; L ¼ R�1 and S ¼ T�1

are the matrices, the rows of which are the left eigenvectors of A
and B. These matrices can be written as [24]

R ¼

1 0 b b

u 0 bðuþ aÞ bðu� aÞ
v �1 bv bv
/2

ðc�1Þ �v bðH þ uaÞ bðH � uaÞ

0BBBB@
1CCCCA

L ¼

1� /2

a2 ðc� 1Þ u
a2 ðc� 1Þ v

a2 � ðc�1Þ
a2

v 0 �1 0
/2 � ua a� ðc� 1Þu �ðc� 1Þv c� 1
/2 þ ua �a� ðc� 1Þu �ðc� 1Þv c� 1

0BBBB@
1CCCCA

T ¼

1 0 b b

u 1 bu bu

v 0 bðv þ aÞ bðv � aÞ
/2

ðc�1Þ u bðH þ vaÞ bðH � vaÞ

0BBBB@
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S ¼

1� /2

a2 ðc� 1Þ u
a2 ðc� 1Þ v

a2 � ðc�1Þ
a2

�u 1 0 0
/2 � va �ðc� 1Þu a� ðc� 1Þv c� 1
/2 þ va �ðc� 1Þu �a� ðc� 1Þv c� 1

0BBBB@
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K ¼

u 0 0 0
0 u 0 0
0 0 uþ a 0
0 0 0 u� a

0BBB@
1CCCA; W ¼

v 0 0 0
0 v 0 0
0 0 v þ a 0
0 0 0 v � a

0BBB@
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where a is the speed of the sound and defined as a2 ¼ cp=q, and
b ¼ 1=ð2a2Þ. Although the eigenvalue matrices K and W are un-
iquely defined in the system, it should be noticed that there are infi-
nitely many choices of eigenvectors. It should be noted that the
chosen set of eigenvectors can slightly affect the results for certain
algorithms [25], the results in this paper, however, are invariant of
the selection of the eigenvectors.

3. Numerical methods

Many computational algorithms have been developed for com-
pressible flows governed by hyperbolic conservation laws. In this
section, we briefly introduce some variants of the state-of-art
shock capturing schemes. The semi-discrete form of the Euler
equations given in Eq. (1) is

dqi;j

dt
þ 1

Dx
Fiþ1=2;j � Fi�1=2;j
� �

þ 1
Dy

Gi;jþ1=2 � Gi;j�1=2
� �

¼ 0 ð3Þ

where qi;j is the cell averaged vector of dependant variables; Fi�1=2;j

are the fluxes at the left and right cell boundaries, and Gi;j�1=2 are the
fluxes at the bottom and top cell boundaries. To implement the
Runge–Kutta schemes for the time integration, we cast the model
equations in the following form

dq
dt
¼ £ðqÞ ð4Þ

where £ðqÞ is the discrete operator representing the convective flux
terms. We assume that the numerical approximation for time level
n is known, and we seek the numerical approximation for time level
nþ 1, after the time step Dt. The optimal third-order accurate total
variation diminishing Runge–Kutta (TVDRK3) scheme is then given
as [26,27]

qð1Þ ¼ un þ Dt£ðqnÞ
qð2Þ ¼ 3

4 qn þ 1
4 qð1Þ þ 1

4 Dt£ðqð1ÞÞ
qnþ1 ¼ 1

3 qn þ 2
3 qð2Þ þ 2

3 Dt£ðqð2ÞÞ
ð5Þ

where the time step should be given by

Dt ¼min g
Dx

maxðj K jÞ ;g
Dy

maxðj W jÞ

� �
ð6Þ

in which maxðj K jÞ and maxðj W jÞ represents the maximum abso-
lute eigenvalues over the entire spatial domain at known time level.
Here, g 6 1 for numerical stability. In this study, we use g ¼ 0:5 for
all the computations. The TVDRK3 scheme has been extensively
used to compute hyperbolic conservation laws (e.g., see [28–32]).
In addition to its TVD property, it has been also shown that the
TVDRK3 predicts slightly more accurate results than some other
third-order Runge–Kutta schemes for solving incompressible flow
problems [33].

3.1. Reconstruction schemes

In this concept, for each cell, reconstructed left and right states
are determined and used to calculate fluxes at cell edges. It consists
of two basic procedures: (i) the selection of the interpolation pro-
cedure to estimate the solution at the interface boundaries from
the solution available at the cell centers, (ii) the selection of the
Riemann solver to determine the flux from the reconstructed left
and right states at the cell boundaries. In the semi-discrete form
given by Eq. (3) the fluxes at the interfaces are functions of left
(bottom in y-direction) and right (top in y-direction) reconstructed
states. In the following, we will omit the spatial index which is not
in the direction of the action. We only present the schemes show-
ing the procedures in x-direction, however, the same procedures
are applied in y-direction.

3.1.1. MUSCL reconstruction
The simplest reconstruction scheme is defined as

qL
iþ1=2 ¼ qi; qR

i�1=2 ¼ qi ð7Þ



Fig. 2. Initial conditions for six two-dimensional Riemann problems defined by Lax and Liu [19].

Fig. 3. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. Grid independence study performed by MUSCL-KT scheme with Van Albada flux limiter. The 41 equidistant contour
lines are shown between the density levels of 0.2 and 1.7 inclusively.
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Fig. 4. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. Grid independence study performed by MUSCL-KT scheme with Van Albada flux limiter. The 41 equidistant
contour lines are shown between the density levels of 0.55 and 1.65 inclusively.
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where left and right states are obtained using the first-order
approximations. The resulting scheme preserves monotonicity
(i.e., non-oscillatory behavior without producing a new maximum
or minimum), but it is too diffusive. An established choice for the
high-order interpolation procedure known as Monotone Upwind-
central Schemes for Conservation Laws (MUSCL) was originally
pioneered by Van Leer in his seminal papers [34–36]. MUSCL de-
notes a family of interpolation schemes and many variants were
proposed using the same acronym [37–39]. Flux limiters allows to
limit the slope of the forward and backward gradients in such a
way that the interpolated points do not create a new maximum
or minimum. Near the discontinuity, limiters cause the discretiza-
tion to become a first-order upwind approximation, while away
from the discontinuity, the flux limitation is removed and the
numerical accuracy becomes high-order (i.e., second or third for five
point stencil schemes). A one parameter family of MUSCL scheme
can be defined for any given cell as

qL
iþ1=2 ¼ qi þ

1
4
ð1� jÞ/ 1

r

� �
ðqi � qi�1Þ þ ð1þ jÞ/ðrÞðqiþ1 � qiÞ

� �
ð8Þ

qR
i�1=2 ¼ qi �

1
4
ð1þ jÞ/ 1

r

� �
ðqi � qi�1Þ þ ð1� jÞ/ðrÞðqiþ1 � qiÞ

� �
ð9Þ

where /ðrÞ is the limiter function. The difference ratio r is defined as

r ¼ qi � qi�1

qiþ1 � qi
: ð10Þ

Various limiter functions have been developed in the literature
and are currently applied [39] for capturing shocks. Van Leer [34]
proposed initially the formula
/vlðrÞ ¼
rþ j r j
1þ r

; lim
r!1

/vlðrÞ ¼ 2: ð11Þ

A similar limiter has been applied by Van Albada et al. [40]

/vaðrÞ ¼
r2 þ r
r2 þ 1

; lim
r!1

/vaðrÞ ¼ 1: ð12Þ

Sweby [2] showed the admissible limiter region for second-order
monotonicity domain, which is also called as second-order TVD re-
gion. TVD means that the sum of all the step differences between
adjacent points must remain the same or decrease as time progress.
The lowest boundary of the considered TVD domain, showing the
most dissipative behavior, is an often applied as a limiter. It is
known as min-mod limiter

/mmðrÞ ¼ max 0;minðr;1Þð Þ; lim
r!1

/mmðrÞ ¼ 1: ð13Þ

On the other hand, the upper limit of the domain has been consid-
ered by Roe [41] referring superbee limiter

/sbðrÞ ¼max 0;minð2r;1Þ;minðr;2Þð Þ; lim
r!1

/sbðrÞ ¼ 2: ð14Þ

In between, Van Leer also proposed the monotonized central (MC)
flux limiter [35]

/mcðrÞ ¼max 0;minð2r;0:5ð1þ rÞ;2Þð Þ; lim
r!1

/mcðrÞ ¼ 2: ð15Þ

Superbee limiter leads to very sharp non-diffusive behavior and it is
possible that some contributions are enhanced instead of reduced,
while remaining within the TVD region. The Van Leer, Van Albada
and monotonized central limiters have properties between the



Fig. 5. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. Grid independence study performed by WENO3-S-LFR scheme. The 41 equidistant contour lines are shown between
the density levels of 0.2 and 1.7 inclusively.
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min-mod and superbee limiters as shown in Fig. 1. These limiters are
also called symmetric, exhibit the following symmetry property:

/
1
r

� �
¼ /ðrÞ

r
: ð16Þ

This symmetry condition is a desirable property as it ensures
that the limiting actions for forward and backward gradients oper-
ate in the same way. In this study, we will investigate effects of these
limiters on the solution of two-dimensional Riemann problems.

The valid range for the parameter j in Eq. (8) and Eq. (9) is be-
tween �1 6 j 6 1. In the absence of the limiter function, a value of
less than one results in an upwind biased scheme, while a value of
exactly j ¼ 1 results in a centered scheme (i.e., Lax–Wendroff
scheme). A fully second-order upwind scheme is obtained by set-
ting j ¼ �1. Fromm scheme [42] defined by the average of the
Lax–Wendroff and the second-order upwind schemes is obtained
by setting j ¼ 0. Any value of parameter j results in a second-or-
der reconstruction with an exception of j ¼ 1=3, which results in a
unique third-order accurate reconstruction. The scheme is referred
as Quick scheme [39] when j ¼ 1=2.

Another type MUSCL interpolation scheme was used by Ness-
yahu and Tadmor [43] and Kurganov and Tadmor [44]:

qL
iþ1=2 ¼ qi þ

1
2

/ðrÞ qiþ1 � qi

� �
ð17Þ

qR
i�1=2 ¼ qi �

1
2

/ðrÞ qiþ1 � qi

� �
ð18Þ

which is denotes as MUSCL-KT in this study. This can be considered
as a special case of the one-parameter family of MUSCL scheme (i.e.,
j ¼ 1 in Eq. (8), and j ¼ �1 in Eq. (9)). It should be noted that Eq.
(17) and Eq. (18) can be recovered from Eq. (8) and Eq. (9) when
using a symmetric flux limiter without any dependency in j.

3.1.2. WENO reconstruction
Weighted essentially non-oscillatory (WENO) reconstruction is

another widely used method to construct left and right states at
the cell boundaries from the solution available at the cell centers
[45]. Similar to the MUSCL schemes presented above, the five-point
stencil WENO reconstruction procedures, also known as the third-
order WENO reconstruction, can be written in the following form

qL
iþ1=2 ¼

w1

2
ð�qi�1 þ 3qiÞ þ

w2

2
ðqi þ qiþ1Þ ð19Þ

qR
i�1=2 ¼

w1

2
ðqi�1 þ qiÞ þ

w2

2
ð3qi � qiþ1Þ ð20Þ

where nonlinear weights are defined as

w1 ¼
a1

a1 þ a2
w2 ¼

a2

a1 þ a2
; a1 ¼

d1

ðb1 þ �Þ
2

a2 ¼
d2

ðb2 þ �Þ
2 ð21Þ

in which the smoothness indicators are defined as

b1 ¼ ðqi � qi�1Þ
2
; b2 ¼ ðqiþ1 � qiÞ

2 ð22Þ

where the larger this smoothness indicator bj, the less smooth the
function q is in the stencil. Therefore, if there is a discontinuity in
the stencil, its weights approaches to zero, and the other stencil be-
comes effective. Linear weighting coefficients are d1 ¼ 1=3 and
d2 ¼ 2=3 in Eq. (19), and d1 ¼ 2=3 and d2 ¼ 1=3 in Eq. (20). It is typ-
ical to set � ¼ 10�6 for eliminating zero denominators. In this study,



Fig. 6. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. Grid independence study performed by WENO3-S-LFR scheme. The 41 equidistant contour lines are shown
between the density levels of 0.55 and 1.65 inclusively.
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WENO3-R stands for the third-order WENO reconstruction scheme
given by Eqs. (19) and (20). We emphasize here that WENO
schemes mostly encountered in literature are used along with the
flux-splitting methods [12]. One of the goals in present study is to
compare the performance of this reconstruction based WENO
scheme with that of the flux-splitting based WENO schemes which
will be presented in coming sections.

3.1.3. Rusanov’s Riemann solver
Once left and right states are reconstructed the fluxes can be

determined based on the maximum local wave propagation speed,
Rusanov solver follows [46]

Fiþ1=2 ¼
1
2

FR þ FL
� 	

� ciþ1=2

2
qR

iþ1=2 � qL
iþ1=2

� 	
ð23Þ

where FR is the flux component using the right reconstructed state,
FR ¼ FðqR

iþ1=2Þ, and FL is the flux component using the left recon-
structed state, FL ¼ FðqL

iþ1=2Þ, and ciþ1=2 is the local wave propagation
speed which is the maximum absolute value of the eigenvalues
corresponding to the Jacobian matrix of F between cells i and iþ 1
given by

ciþ1=2 ¼max rðAiÞ; rðAiþ1Þð Þ ð24Þ

where rðAÞ represents the spectral radius of convective Jacobian
matrix A. For the case of Euler equations, it can be simply written
as rðAÞ ¼maxðj u j; j u� a j; j uþ a jÞ. Thus, the wave propagation
speed can be rewritten in the following form

ciþ1=2¼max juji; ju�aji; juþaji; jujiþ1; ju�ajiþ1; j uþajiþ1

� �
ð25Þ
The above flux calculation is sometimes referred to as local Lax–
Friedrichs flux [20,47,48]. There are other possibilities for estimat-
ing the wave propagation speed. For example, one possible way is
to use the Roe average between the left and right states and get
the spectral radius of this averaged state.
3.1.4. Roe’s Riemann solver
According to the Gudunov theorem [49], for a hyperbolic sys-

tem of equations, if the Jacobian matrix of the flux vector is con-
stant (i.e., if A is constant), the exact values of fluxes at the
interfaces can be computed by

Fiþ1=2 ¼
1
2

FR þ FL
� 	

� 1
2

R j K j L qR
iþ1=2 � qL

iþ1=2

� 	
ð26Þ

where j K j is the diagonal matrix consisted of the absolute values of
eigenvalues. In the system of Euler equations, however, the Jacobian
matrix A is not constant (i.e., A ¼ AðqÞ). The Roe solver [10], is an
approximate Riemann solver based around the Godunov scheme
and involves finding an estimate for the interface numerical flux
as follows

Fiþ1=2 ¼
1
2

FR þ FL
� 	

� 1
2
eR j ~K j eL qR

iþ1=2 � qL
iþ1=2

� 	
ð27Þ

where the tilde represents the Roe average (i.e., a density weighted
average) between the left and right states. Specifically, the eigen-
system matrices can be computed from the density averaged values
given by
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~q ¼ qR
ffiffiffiffiffiffiqR
p þ qL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ; ~u ¼ uR

ffiffiffiffiffiffiqR
p þ uL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ;

~v ¼ vR
ffiffiffiffiffiffiqR
p þ vL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ; ~e ¼ eR

ffiffiffiffiffiffiqR
p þ eL

ffiffiffiffiffiqL
pffiffiffiffiffiffiqR

p þ ffiffiffiffiffiqL
p ð28Þ
with the use of the state equations given by Eq. (2), where the left
and right states are available to us from the reconstruction formulas
given in previous sections. It is realized that the stationary
expansion shocks are not dissipated appropriately by this method.
Harten [1] proposed the following remedy to fix the entropy in
Fig. 7. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. The effects of Riemann solve
contour levels are identical to the reference solution.
the expansion shocks. To fix the entropy, the Roe averaged eigen-
values are replaced by

j ~ki j¼
j ~ki j; if j ~ki jP 2e~a
~k2

i =ð4e~aÞ þ e~a; if j ~ki j< 2e~a

(
ð29Þ

where ~a is the speed of the sound at averaged state. Here,
~k1 ¼ ~k2 ¼ ~u, ~k3 ¼ ~uþ ~a, and ~k4 ¼ ~u� ~a are the components of the
diagonal matrix K. Here, e is a small positive number and is typi-
cally chosen as e ¼ 0:1 in our computations. Although it is not in-
cluded in our computations, the Lax–Friedrichs flux with wave
rs for reconstruction schemes using the resolution of 400� 400. In all figures, the
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propagation speed based on the Roe averages can also be recovered
from Eq. (27) when we replace the eigenvalues with

j ~ki j¼max ~ki;maxð~k1; ~k2; ~k3; ~k4Þ
� 	

: ð30Þ
3.2. Flux-splitting WENO schemes

In the following, we explain several implementations for the
weighted essentially non-oscillatory (WENO) scheme which can
be considered one of the state-of-art shock capturing methods
[8,12,50]. As we discussed earlier, we can generally classify the
Fig. 8. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. The effects of Riemann solv
contour levels are identical to the reference solution.
state-of-art shock capturing schemes as (i) reconstruction based
approaches and (ii) flux-splitting based approaches. Variants of
WENO schemes can be constructed in both procedures. In the first
approach, WENO reconstruction can be utilized to construct left
and right states at the cell boundaries from the solution available
at the cell centers, and a Riemann solver can be used to find fluxes
at the cell boundaries [45]. This procedure is explained in previous
section by using the third-order reconstruction scheme. In the sec-
ond approach, depending on the direction in which the informa-
tion is propagating, flux-splitting can be first performed to obtain
positive and negative fluxes, and then WENO reconstruction can
be used to compute both fluxes at the cell boundaries [12]. In this
ers for reconstruction schemes using the resolution of 400� 400. In all figures, the



Table 1
Computed L2 norms of density fields, kL2ðqÞk, for the solutions obtained by various
Riemann solvers and reconstruction schemes on a grid resolution of 4002. Reference
solutions are obtained by the MUSCL-KT scheme on a grid resolution of 32002.

Scheme Configuration 3 Configuration 12

MUSCL-KT-Rusanov 1.4931E�3 2.6209E�4
MUSCL-KT-Roe 8.8567E�4 2.1643E�4
MUSCL-Fromm-Rusanov 1.5045E�3 2.6076E�4
MUSCL-Fromm-Roe 8.9596E�4 2.1556E�4
MUSCL-3rd-Rusanov 1.5055E�3 2.6101E�4
MUSCL-3rd-Roe 8.9978E�4 2.1588E�4
WENO3-R-Rusanov 1.7122E�3 2.9168E�4
WENO3-R-Roe 1.0512E�3 2.3633E�4

Fig. 9. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. Comparison of the reconstructi
contour levels are identical to the reference solution.
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section, we focus the second approach testing several forms of the
splitting procedures.

Depending on the direction in which the information is propa-
gating, flux vector splitting framework can be used for constructing
high-order shock capturing schemes. The basic idea of flux-split-
ting is to decompose the flux vectors into two parts

F ¼ Fþ þ F�; G ¼ Gþ þ G� ð31Þ

and the WENO reconstruction procedures are then applied to the
both positive and negative parts separately which will be presented
in the following sections. Several flux vector splitting methods can
be used to decompose the fluxes. In this study, we only focus the
on schemes with Rusanov solver using the resolution of 400� 400. In all figures, the



Fig. 10. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. Comparison of the reconstruction schemes with Rusanov solver using the resolution of 400� 400. In all figures,
the contour levels are identical to the reference solution.
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local splitting procedures with their simplicity. More complex split-
ting procedures can be found in literature (e.g., using the character-
istics based transformations on the selective stencils in a close
neighborhood of the cell [51–53]).

Using the definition of Eq. (31), the semi-discrete form of the
Euler equations given in Eq. (3) can be rewritten as

dqi;j

dt
þ 1

Dx
Fþiþ1=2;j � Fþi�1=2;j

� 	
þ 1

Dy
Gþi;jþ1=2 � Gþi;j�1=2

� 	
þ 1

Dx
F�iþ1=2;j � F�i�1=2;j

� 	
þ 1

Dy
G�i;jþ1=2 � G�i;j�1=2

� 	
¼ 0 ð32Þ
where the positive and negative fluxes at the cell boundaries are
computed using the WENO reconstruction procedures from the
cell centered valued fluxes. Similar to our previous treatments, we
will omit the spatial index which is not in the direction of the
action. We only present the schemes showing the procedures in
x-direction, however, the same procedures are applied in y-
direction.

3.2.1. The third-order WENO reconstruction
To compute fluxes at the cell boundaries, the third-order WENO

reconstruction procedure in x-direction becomes
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Fþiþ1=2 ¼
wþ1
2
ð�Fþi�1 þ 3Fþi Þ þ

wþ2
2
ðFþi þ Fþiþ1Þ ð33Þ

F�i�1=2 ¼
w�1
2
ðF�i�1 þ F�i Þ þ

w�2
2
ð3F�i � F�iþ1Þ ð34Þ

where nonlinear weights are defined as

w�1 ¼
a�1

a�1 þ a�2
w�2 ¼

a�2
a�1 þ a�2

ð35Þ

and

a�1 ¼
d�1

ðb�1 þ �Þ
2 a�2 ¼

d�2
ðb�2 þ �Þ

2 ð36Þ
Table 2
Computed L2 norms of density fields, kL2ðqÞk, for the solutions obtained by various
MUSCL reconstruction schemes on a grid resolution of 4002 using the Rusanov solver
with the Van Albada flux-limiter. Results from the WENO3 reconstruction and the
first-order reconstruction given by Eq. (7) are also included. Reference solutions are
obtained by the MUSCL-KT scheme on a grid resolution of 32002.

Scheme Configuration 3 Configuration 12

First-order 4.6460E�3 1.0998E�3
MUSCL-KT 1.4931E�3 2.6209E�4
MUSCL-Upwind (j ¼ �1) 1.5013E�3 2.6008E�4
MUSCL-Fromm (j ¼ 0) 1.5045E�3 2.6076E�4
MUSCL-3rd (j ¼ 1=3) 1.5055E�3 2.6101E�4
MUSCL-Quick (j ¼ 1=2) 1.5060E�4 2.6159E�4
MUSCL-Central (j ¼ 1) 1.5070E�4 2.6164E�4
WENO3-R 1.7122E�3 2.9168E�4

Fig. 11. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. The effects of flux-limiter
resolution of 400� 400. In all figures, the contour levels are identical to the reference s
in which � ¼ 10�6 is used to avoid denominators become zero and
the smoothness indicators are defined as

b�1 ¼ ðF
�
i � F�i�1Þ

2
; b�2 ¼ ðF

�
iþ1 � F�i Þ

2 ð37Þ

where linear weighting coefficients are dþ1 ¼ 1=3 and dþ2 ¼ 2=3 in
the positive fluxes, and d�1 ¼ 2=3 and d�2 ¼ 1=3 in the negative
fluxes.

3.2.2. The fifth-order WENO reconstruction
Similarly, using total 7 point stencil, the fifth-order WENO

reconstruction procedure in x-direction becomes

Fþiþ1=2 ¼
wþ1
6
ð2Fþi�2 � 7Fþi�1 þ 11Fþi Þ þ

wþ2
6
ð�Fþi�1 þ 5Fþi þ 2Fþiþ1Þ

þwþ3
6
ð2Fþi þ 5Fþiþ1 � Fþiþ2Þ ð38Þ

F�i�1=2 ¼
w�1
6
ð�F�i�2 þ 5F�i�1 þ 2F�i Þ þ

w�2
6
ð2F�i�1 þ 5F�i � F�iþ1Þ

þw�1
6
ð11F�i � 7F�iþ1 þ 2F�iþ2Þ ð39Þ

where nonlinear weights are defined as

w�1 ¼
a�1

a�1 þ a�2 þ a�3
w�2 ¼

a�2
a�1 þ a�2 þ a�3

w�3 ¼
a�3

a�1 þ a�2 þ a�3
ð40Þ

and

a�1 ¼
d�1

ðb�1 þ �Þ
2 a�2 ¼

d�2
ðb�2 þ �Þ

2 a�3 ¼
d�3

ðb�3 þ �Þ
2 ð41Þ
s for the MUSCL-3rd order reconstruction scheme with the Roe solver using the
olution.
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in which � ¼ 10�6 is used to avoid denominators become zero and
the linear weighting coefficients are dþ1 ¼ 1=10, dþ2 ¼ 6=10, and
dþ3 ¼ 3=10 in the positive fluxes, and d�1 ¼ 3=10, d�2 ¼ 6=10, and
d�3 ¼ 1=10 in the negative fluxes. The smoothness indicators in the
stencils are defined as [12]:

b�1 ¼
13
12
ðF�i�2 � 2F�i�1 þ F�i Þ

2 þ 1
4
ðF�i�2 � 4F�i�1 þ 3F�i Þ

2 ð42Þ

b�2 ¼
13
12
ðF�i�1 � 2F�i þ F�iþ1Þ

2 þ 1
4
ðF�i�1 � F�iþ1Þ

2 ð43Þ

b�3 ¼
13
12
ðF�i � 2F�iþ1 þ F�iþ2Þ

2 þ 1
4
ð3F�i � 4F�iþ1 þ F�iþ2Þ

2
: ð44Þ
3.2.3. Lax–Friedrichs splitting
One of the simplest, albeit more dissipative, splitting methods is

local Lax–Friedrichs flux-splitting which can be written as

F� ¼ 1
2

F � @F
@q

���� ����q� �
; G� ¼ 1

2
G� @G

@q

���� ����q� �
ð45Þ

which can be written as

F� ¼ 1
2

F � R j K j Lqð Þ; G� ¼ 1
2

G� T j W j Sqð Þ ð46Þ

In this study, WENO-S-LF stands for the WENO scheme with the
flux-splitting given by Eq. (46). The Lax–Friedrichs splitting given
in Eq. (46) can also be further simplified to the

F� ¼ 1
2

F � aqð Þ; G� ¼ 1
2

G� bqð Þ ð47Þ
Fig. 12. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. The effects of flux-limit
resolution of 400� 400. In all figures, the contour levels are identical to the reference s
where a and b are the maximum values of absolute values of local
eigenvalues, explicitly given as a ¼ maxðj u j; j uþ a j; j u� a jÞ, and
b ¼maxðj v j; j v þ a j; j v � a jÞ. This version of the Lax–Friedrichs
flux-splitting is computationally more efficient than the splitting
procedure given by Eq. (46) and it is quite similar the Rusanov
solver introduced earlier [47,48]. Therefore, it is sometimes referred
to as Rusanov flux-splitting. Therefore, to highlight the difference
from the Lax–Friedrichs splitting given by Eq. (46), in this work,
we denote the WENO scheme with the flux-splitting given by Eq.
(47) as WENO-S-LFR.

3.2.4. Steger and Warming splitting
Steger and Warming [21] developed the following flux-splitting

procedure based on a eigenvalue decomposition

ki ¼ kþi þ k�i ; wi ¼ wþi þ w�i ð48Þ

where ki and wi are respectively eigenvalues of A and B matrices.
Then, the split-fluxes become

F� ¼ q
2c

k�4 þ 2ðc� 1Þk�1 þ k�3
ðu� aÞk�4 þ 2ðc� 1Þuk�1 þ ðuþ aÞk�3
vk�4 þ 2ðc� 1Þvk�1 þ vk�3
ðH � uaÞk�4 þ 2/2k�1 þ ðH þ uaÞk�3

0BBBB@
1CCCCA

G� ¼ q
2c

w�4 þ 2ðc� 1Þw�1 þ w�3
uw�4 þ 2ðc� 1Þuw�1 þ uw�3
ðv � aÞw�4 þ 2ðc� 1Þvw�1 þ ðv þ aÞw�3
ðH � vaÞw�4 þ 2/2w�1 þ ðH þ vaÞw�3

0BBBB@
1CCCCA
ers for the MUSCL-3rd order reconstruction scheme with the Roe solver using the
olution.
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where /2 ¼ 1
2 ðc� 1Þðu2 þ v2Þ; the eigenvalues of A are

k1 ¼ k2 ¼ u; k3 ¼ uþ a, and k4 ¼ u� a; and the eigenvalues of B
are w1 ¼ w2 ¼ v ;w3 ¼ v þ a, and w4 ¼ v � a. The split fluxes are
continuous but not differentiable due to the sign change in Eq.
(48). This can lead to spurious numerical errors near the stagnation
and sonic points. Similar to remedy for the entropy fix in Roe solver,
the eigenvalues are blended smoothly into their zero’s [54]

k�i ¼
1
2

ki �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i þ e2a2
q� �

; w�i ¼
1
2

wi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

i þ e2a2
q� �

ð49Þ

where it is typical to choose the e ¼ 0:1. The resulting joint solver is
called as WENO-S-SW.

3.2.5. Van Leer splitting
Van Leer [22] developed a flux-splitting procedure in which he

imposed a requirement that @F�

@q and @G�

@q must be continuous func-
tion of directional Mach numbers defined as Mx ¼ u=a and
My ¼ v=a. Then the split procedure follows: Fþ ¼ F and F� ¼ 0 if
Mx P 1; F� ¼ F and Fþ ¼ 0 if Mx 6 1. When flow speed is
0 < Mx < 1, the positive-flux is computed by

Fþ ¼ 1
4
qaðMx þ 1Þ2

1

uþ 2a�u
c

v
2a2�ðc�1Þu2þ2ðc�1Þau

c2�1 þ u2þv2

2

0BBBBBB@

1CCCCCCA ð50Þ

and negative-flux component becomes F� ¼ F � Fþ. For �1 < Mx

< 0, the negative-flux is computed according to
Fig. 13. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. The effects of flux-limiters fo
400� 400. In all figures, the contour levels are identical to the reference solution.
F� ¼ �1
4
qaðMx � 1Þ2

1

u� 2aþu
c

v
2a2�ðc�1Þu2�2ðc�1Þau

c2�1 þ u2þv2

2

0BBBB@
1CCCCA ð51Þ

and the remaining positive-flux component is computed by
Fþ ¼ F � F�. Similarly, the splitting can be written in y direction as

Gþ ¼ 1
4
qaðMy þ 1Þ2

1

u

v þ 2a�v
c

2a2�ðc�1Þv2þ2ðc�1Þav
c2�1 þ u2þv2

2

0BBBBB@

1CCCCCA ð52Þ

G� ¼ �1
4
qaðMy � 1Þ2

1
u

v � 2aþv
c

2a2�ðc�1Þv2�2ðc�1Þav
c2�1 þ u2þv2

2

0BBBB@
1CCCCA: ð53Þ

The resulting joint solver is called as WENO-S-VL.

4. Results

The main goal of this section is to test and evaluate the joint
solvers introduced in Section 3 in the numerical simulation of
the two-dimensional Euler equations. In order to analyze the
behavior of these schemes various test problems described by
Lax and Liu [19] having different properties including shock and
r the MUSCL-KT reconstruction scheme with the Roe solver using the resolution of



Fig. 14. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. The effects of flux-limiters for the MUSCL-KT reconstruction scheme with the Roe solver using the resolution of
400� 400. In all figures, the contour levels are identical to the reference solution.
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rarefaction waves as well as contact discontinuities. In this study,
we use six of these benchmark problems by using a ratio of specific
heats, c ¼ 1:4. Initial configurations in each quadrant are shown in
Table 3
Computed L2 norms of density fields, kL2ðqÞk, for the solutions obtained by various
flux-limiters using the underlying MUSCL-3rd reconstruction scheme with Roe’s
approximate Riemann solver on a grid resolution of 4002. Reference solutions are
obtained by the MUSCL-KT scheme on a grid resolution of 32002.

Flux-limiter Configuration 3 Configuration 12

Min-mod 1.1803E�3 2.5139E�4
Van Albada 8.9978E�4 2.1588E�4
Van Leer 6.6052E�4 1.8406E�4
Monotonized central 3.6999E�4 1.5300E�4
Superbee 2.5796E�4 8.0691E�4

Table 4
Computed L2 norms of density fields, kL2ðqÞk, for the solutions obtained by various
flux-limiters using the underlying MUSCL-KT reconstruction scheme with Roe’s
approximate Riemann solver on a grid resolution of 4002. Reference solutions are
obtained by the MUSCL-KT scheme on a grid resolution of 32002.

Flux-limiter Configuration 3 Configuration 12

Min-mod 1.1803E�3 2.5319E�4
Van Albada 8.8567E�4 2.1643E�4
Van Leer 6.6052E�4 1.8404E�4
Monotonized central 3.6999E�4 1.5300E�4
Superbee 2.5796E�4 8.0691E�4
Fig. 2 for completeness. The interested reader is referred to their
archival manuscript for the details of the wave structures of each
configuration for these benchmark test problems.

4.1. The performance of five-point stencil high-resolution schemes

This section investigates the performance characteristics of
five-point stencil high-resolution schemes for hyperbolic conserva-
tion laws by solving two-dimensional Riemann problems for the
Euler equations. Several variants of MUSCL and WENO reconstruc-
tion and flux-splitting procedures are considered and compared for
their effectiveness. We demonstrate our results for solving two test
problems: (i) Configuration 3 of Lax and Liu [19] involving four
shocks, and (ii) Configuration 12 of Lax and Liu [19] involving
two shocks and two contact discontinuities. First, a grid indepen-
dence study is performed by the MUSCL-KT reconstruction scheme
using the Van Albada flux limiter. As shown in Fig. 3 for various
resolutions from 2002 to 32002 at time t ¼ 0:3, the four shocks
structure in Configuration 3 produces a narrow jet, which becomes
more clear in higher resolutions. The field snapshots shown in
Fig. 3 demonstrate 41 equidistant contour lines between the den-
sity levels of 0.2 and 1.7 inclusively. Similarly, Fig. 4 illustrates re-
sults for Configuration 12 in which 41 equidistant contour lines
between the density levels of 0.55 and 1.65 are plotted at time
t ¼ 0:25. As we can see, the presence of thinner and thinner discon-
tinuous layers as the flow field evolves in time is not fully captured
by low grid resolution representations. Fig. 5 and Fig. 6 demon-
strate the same grid refinement analysis by using the third-order



Fig. 15. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. Comparison of flux-splitting schemes using the resolution of 400� 400. In all figures, the contour levels are
identical to the reference solution. The reconstruction based WENO scheme with Roe solver, WENO3-R-Roe, is also included for comparison purposes.

Table 5
Computed L2 norms of density fields, kL2ðqÞk, for the solutions obtained by various
flux-splitting schemes on a grid resolution of 4002. The results obtained by the same
stencil reconstruction based schemes with Rusanov’s and Roe’s approximate Riemann
solvers are also included. Reference solutions are obtained by the MUSCL-KT scheme
on a grid resolution of 32002.

Scheme Configuration 3 Configuration 12

WENO3-S-LFR 1.5391E�3 3.1298E�4
WENO3-S-LF 1.4361E�4 2.8434E�4
WENO3-S-SW 1.4987E�4 2.9020E�4
WENO3-S-VL 1.2953E�4 2.6530E�4
WENO3-R-Rusanov 1.7122E�3 2.9168E�4
WENO3-R-Roe 1.0512E�3 2.3633E�4
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WENO scheme with local Lax–Friedrichs–Rusanov flux-splitting,
WENO3-S-LFR, in solving the Configuration 3 and Configuration
12 of Lax and Liu [19], respectively. As expected, the sharp non-
oscillatory gradients are obtained by increasing resolution. In the
following analysis, we use the data obtained by the MUSCL-KT
reconstruction scheme on the highest resolution of 32002 as a ref-
erence solution to our further evaluations.

Although the grid independence studies show that the results
depend mostly on the resolution that have been considered, this
paper concentrates on the solutions among many variants of the
high-order shock capturing schemes to draw numerical assess-
ments on their accuracy. Based on our grid refinement analysis,
it should also be highlighted that the development of effective
adaptive mesh refinement procedures is crucial to accurate repre-
sentation of a discontinuity within a smaller grid bandwidth. In
this paper, however, we would like to investigate the performance
of several high-order joint solvers on a fixed grid system. In the fol-
lowing analysis, the effects of several reconstruction procedures in
combination with various Riemann solvers at the cell interfaces are
investigated using a resolution of 4002. Several variants of flux-
limiter based MUSCL reconstruction procedures are compared with
the WENO reconstruction procedure which is based on the idea of
nonlinear weights with the smoothness indicators.

First, the effects of the selection of Riemann solvers on the accu-
racy of the reconstruction based solver are systematically investi-
gated for the same test cases. Figs. 7 and 8 compare joint Riemann
solvers of Roe and Rusanov with various forms of reconstruction
procedures for the Configuration 3 and Configuration 12 of Lax
and Liu [19], respectively. The Van Albada flux limiter is used in all
the MUSCL reconstruction schemes presented in these figures. Our
comparisons in Figs. 7 and 8 also include several MUSCL reconstruc-
tion schemes such as Kurganov and Tadmor, Fromm scheme (j ¼ 0),
the 3rd-order scheme (j ¼ 1=3) as well as the third-order WENO
reconstruction. It can bee seen that the Roe’s approximate Riemann
solver produces less dissipative results compared to the Rusanov’s
approximate Riemann solver. Due to the use of a symmetric flux lim-
iter results are nearly independent of j for MUSCL schemes. It can
also be seen that there are no significant differences between the
third-order WENO and MUSCL reconstructions. Our results clearly
show that the dissipative character of the Riemann solver is more
crucial on the accuracy of the solution process than the selection
of the reconstruction procedure. The reason is that the approximate
Riemann solvers are highly sensitive to how well a discontinuity is
aligned with the underlying grid of the problem. For our cases in
which the grid is not aligned with the discontinuity, cross coupling
between the Riemann problems in the different directions intro-
duces numerical dissipation error that scales directly with the cell



Fig. 16. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. Comparison of flux-splitting schemes using the resolution of 400� 400. In all figures, the contour levels are
identical to the reference solution. The reconstruction based WENO scheme with Roe solver, WENO3-R-Roe, is also included for comparison purposes.

Fig. 17. Configuration 3 of Lax and Liu [19] at time t ¼ 0:3. Density fields obtained by using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
resolutions.
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Fig. 18. Configuration 4 of Lax and Liu [19] at time t ¼ 0:25. Density fields obtained by using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
resolutions.

Fig. 19. Configuration 6 of Lax and Liu [19] at time t ¼ 0:25. Density fields obtained by using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
resolutions.
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Fig. 20. Configuration 11 of Lax and Liu [19] at time t ¼ 0:3. Density fields obtained by using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
resolutions.
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interface normal velocity in directions tangential to the shock where
this component of velocity is low.

In addition to these contour plots, we also present error norms
in order to quantify the results. Using the difference between high-
resolution reference solution and computed solutions, we compute
the mean discrete L2 norms of the density field as

kL2ðqÞk ¼ 1
NxNy

XNx

i¼1

XNy

j¼1

j qref
i;j � qi;jj

2 ð54Þ

where qref is the reference solution obtained by the MUSCL-KT
scheme on a resolution of 32002. It should be noted that we evalu-
ate the reference solution data at the discrete points corresponding
to the coarse grid with Nx ¼ Ny ¼ 400. The computed discrete L2

norms of the density field are tabulated in Table 1 for both
configurations yielding consistent results with the demonstrations
presented in Figs. 7 and 8.

Second, we focus on performance of reconstruction schemes in
more detail using the same flux-limiter and Riemann solver. In all
the cases presented in Figs. 9 and 10, the Van Albada flux-limiter
and the Rusanov’s approximate Riemann solver are jointly utilized
in the various forms of MUSCL reconstructions. The third-order
WENO reconstruction scheme is also included for comparison pur-
poses. We also included the results obtained by the first-order
reconstruction scheme given by Eq. (7). First of all, the first-order
scheme shows excessive dissipation compared to the all forms of
higher-order MUSCL schemes. Figs. 9 and 10 clearly demonstrate
that the type of reconstruction is not as dominant as the other
factors (i.e., type of the flux-limiter or type of the Riemann solver)
when designing a shock capturing compressible flow solver. This
behavior can also be seen from Table 2 showing errors in density.

Next, we examine the effects of flux-limiters on the MUSCL
reconstruction schemes. In order to minimize the numerical dissi-
pation due to the Riemann solver, we explored several limiters to
preserve the monotonicity of our solutions by using the Roe’s
approximate Riemann solver in our joint solvers. Solving the case
with Configuration 3 and Configuration 12, Figs. 11 and 12 demon-
strates results for the MUSCL scheme using a unique third-order
accurate reconstruction with j ¼ 1=3. Similar analysis with MUS-
CL-KT scheme is also shown in Figs. 13 and 14 for Configuration
3 and Configuration 12 test problems, respectively. We show that
results are also highly dependent to the choice of the flux-limiters
which work by interpolating between the flux calculated by a re-
duced-order scheme and the flux calculated by a higher-order
scheme. Tables 3 and 4 also show that a proper selection of the
flux-limiter function affects solutions more than the type of the
interpolation procedure in MUSCL reconstructions. The underpin-
ning idea in flux limiting is that oscillations near a discontinuity
can be eliminated by making the approximation mimic a first or-
der-scheme near a steep gradient using a flux-limiter, while higher
order accuracy is achieved in smoother regions. Although MUSCL
schemes with superbee limiter yield smaller L2 norm, it is clear
from the figures that the non-dissipative superbee flux-limiter
along with the Roe solver does not provide enough dissipation to
damp spurious signals. Although the superbee limiter produces
the sharpest possible gradients while still being TVD, we suggest



Fig. 21. Configuration 12 of Lax and Liu [19] at time t ¼ 0:25. Density fields obtained by using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
resolutions.
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to use a flux-limiter showing some form of the dissipative behavior
(e.g., Van Leer or Van Albada limiters) to eliminate amplified cross-
coupling perturbations.

Finally, we investigate the performance of flux-splitting proce-
dures in five-point stencil WENO schemes. In Figs. 15 and 16 we
compare various forms of flux-splitting WENO schemes which they
do not require to use a Riemann solver at the cell interfaces. For
comparison purposes, we also include results for the reconstruc-
tion based WENO scheme with Roe’s Riemann solver, WENO3-R-
Roe. For the flux-splitting WENO solvers based on the smoothness
indicators, we observe that the results show negligible sensitivity
to the flux-splitting procedure. However, Table 5 demonstrates
that the Van Leer flux-splitting yields slightly more accurate re-
sults. We also demonstrate that the reconstruction based WENO
scheme with Roe solver is more accurate than all the versions of
the flux-splitting WENO solvers tested in this study.

4.2. The performance of the third- and fifth-order flux-splitting WENO
schemes

In this section, we investigate the effects of the order of accu-
racy on the solution for using the third-order (total five-point sten-
cil) and fifth-order (total seven-point stencil) WENO schemes for
solving two-dimensional Riemann problems. Similar to the our
previous analysis, the performances of these high-resolution solv-
ers are compared for several carefully selected test cases described
by Lax and Liu [19]. Although we investigated four flux-splitting
schemes described in Section 3.2, it is found that the use of the
WENO scheme with the van Leer flux vector splitting scheme pro-
vides solutions for a variety of benchmark problems with slightly
better accuracy. Therefore, we only present results obtained by
the third-order WENO3-S-VL and the fifth-order WENO5-S-VL
solvers.

In order to show the effects of the various resolution on both
the third-order and fifth-order WENO schemes for different flow
configurations described in Fig. 2, we demonstrate the six sets of
comparisons in a consistent way. Fig. 17 shows the density con-
tours for the structure of four shocks producing a narrow jet;
Fig. 18 demonstrates another problem involving four shocks; the
problem shown in Fig. 19 involves four contact discontinuities;
the problems shown in Figs. 20 and 21 involve two shocks and
two contact discontinuities; and the final problem shown in
Fig. 22 involves two contact discontinuities, a rarefaction as well
as a shock wave. We use the same comparison methodology in
all these configurations for which the results obtained by the
third-order WENO schemes are shown in top panels, and bottom
panels represents those of obtained by the fifth-order WENO
schemes. The resolutions increase from left to right. In all figures,
we plot the continuous density levels using the same layouts for
each problem in order to highlight the differences among the joint
solvers.

Performing benchmark quality high-resolution computations,
we demonstrate that the solutions are quite dependant to the or-
der of accuracy. The fifth-order WENO scheme produce solutions
with small-scale vortical flow structures for higher resolutions
which are usually associated with the high Reynolds number



Table 6
The total CPU costs (in h) for several shock capturing schemes considered in this
study.

Resolution MUSCL-KT WENO3-R WENO3-S-VL WENO5-S-VL

4002 0.1961 0.2335 0.1614 0.2490

8002 1.6411 1.9611 1.3747 2.1302

16002 14.3873 17.1066 12.4862 18.9391

32002 137.1953 156.0613 111.9615 175.8576
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viscous flows. For example, as shown in Fig. 17, small vortices are
developed along the slip line which agree well with the results
documented by Baeza et al. [55] using an adaptive mesh refine-
ment method with 20482 resolution. According to our computa-
tions, it is important that these Kelvin–Helmholtz instability like
vortical structures are not captured in any forms of the third-order
WENO schemes at any resolution being considered.

We surprisingly find that there is no development of these
small scale vortical structures when using the third-order WENO
schemes equipped with all form of splitting procedure tested in
this study, even with a quite high resolution of 32002 for all the
flow configurations tested here. For example, results of Figs. 17
and 19, WENO5-S-VL clearly shows the Kelvin–Helmholtz instabil-
ities at 16002 resolution while using WENO3-S-VL there is no sign
of instability at much higher 32002 resolution. Based on our
numerical experiments performed here, we emphasize that it is
not possible to make a general conclusion whether it is possible
to capture these small-scale vortical structures using high enough
spatial resolution or not by using the five-point stencil methods
such as MUSCL or WENO3 schemes. However, our results clearly
demonstrate the resolving power of the higher order WENO
schemes which can be determined by the number of small vortical
structures that can be captured along the discontinuous slip lines.
Although the Euler equations represent the inviscid flows, the
upwinding in shock capturing algorithms add the numerical dissi-
pation to the system. The difference between the third- and fifth-
order schemes would be explained in following way. First, it is well
know from the spectral analysis that the amount of numerical
Fig. 22. Configuration 15 of Lax and Liu [19] at time t ¼ 0:2. Density fields obtained by
resolutions.
dissipation added to the Euler system by the fifth-order order
scheme are smaller than that of the third-order scheme. Second,
increasing the resolution results in reducing the effective dissipa-
tion range. Consequently, the artificial cell Reynolds number in
high-order schemes becomes higher and higher by increasing the
order of accuracy and resolution. Therefore, the solution convect
the vorticity and generate small-scale vortical flow structures sim-
ilar to those observed in high Reynolds number turbulent flows.
Since the vorticity is generated as a result of a discontinuity in
the flow field, these solutions can be considered valid and accurate
solutions to the Euler equations.

In all the cases considered here, we showed that the vorticity
may be created as a result of a discontinuity in the flow or it
may result from numerical dissipation error in the computational
technique which is another mechanism for creating vorticity. Usu-
ally we attempt to eliminate all of the computational errors,
although it may not always be possible since all numerical
using the WENO3 and WENO5 with the Van Leer flux-splitting method on different
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schemes for the Euler equations require some level of artificial dis-
sipation due to upwinding towards to the wave propagation direc-
tion. When vorticity is generated as a result of a discontinuity in
the flow, as we see from the high-resolution high-order accurate
numerical simulations of the Euler equations, the use of at least a
fifth-order accurate scheme is required to capture underlying
physics with wave disturbances. Therefore, we conclude that the
development of high-order algorithms is critical to convect these
small-scale vortical structures without damping in time. Our re-
sults could also be considered a starting motivation for designing
implicit large-eddy simulation (ILES) algorithms for high Reynolds
number compressible flows, a topic we intend to investigate fur-
ther in a future study. ILES is a so-called no turbulence model
assuming that the numerics provide sufficient modeling of the
subgrid terms to allow the correct amount dissipation of turbulent
kinetic energy (see [17] for a comprehensive review). Numerical
methods for solving the Euler equations usually add numerical
dissipation to discrete system in order to ensure stability by pro-
ducing a vanishing viscosity flow solution. This artificial dissipa-
tion disappears in the limit of mesh size tending to zero
remaining consistent with the governing equations. We also ad-
dress [56,57] for extensive discussions and derivations of physical
basis for the form of artificial dissipations in the cell-centered
shock capturing finite volume methods in which the numerical
grid is assumed to be equivalent to a top hat filter in physical
space.

Finally, we present the computational efficiencies of the various
shock capturing schemes considered in this study. All computa-
tions were carried out using the gfortran compiler on a Linux clus-
ter system made up of quad-core Intel Xeon X5355 (2.66 GHz/
node). The total CPU costs (in hours) for the third-order and the
fifth-order Van Leer flux-splitting WENO schemes which are listed
in Table 6 for various resolutions. The CPU times for the recon-
struction based schemes that use the Rusanov’s Riemann solver
are also included. Although we have not attempted any special ef-
forts for writing optimal code, we can conclude that the splitting
based approaches are slightly more efficient than the reconstruc-
tion based approaches. Table 6 also shows that the computational
cost of the fifth-order WENO scheme is around 1.5 times higher
than the cost of the third-order WENO scheme. We also note here
that the CPU cost approximately increases by a factor of eight with
double the resolution in each direction, which can be considered as
an optimal scaling ratio for the fixed CFL number computations
over a two-dimensional domain.
5. Conclusions

This study investigates the performance of high-resolution
schemes for hyperbolic conservation laws by solving two-dimen-
sional Riemann problems for the Euler equations in gas dynamics.
Several variants of flux-limiter based MUSCL reconstruction proce-
dures are compared to the WENO reconstruction procedure which
is based on the idea of nonlinear weights with the smoothness
indicators. The effects of several reconstruction procedures are
investigated in combination with various Riemann solvers at the
cell interfaces. The performances of local Lax–Friedrichs, Steger
and Warming and Van Leer flux-splitting procedures on the accu-
racy of the third- and fifth-order WENO schemes are also tested
and compared on different resolutions. The joint solvers are ap-
plied to several Riemann problems including shock and rarefaction
waves as well as contact discontinuities. It is shown that Roe solv-
ers are less dissipative than the Rusanov solver for the reconstruc-
tion based schemes in which results are also highly dependent to
the choice of the flux-limiter. We show that the non-dissipative
superbee flux-limiter along with the Roe solver does not provide
enough dissipation to damp spurious signals. Thus, we suggest to
use a flux-limiter showing some form of the dissipative behavior.
In assessments of the flux-splitting WENO solvers, we observe that
the results show negligible sensitivity to the flux-splitting proce-
dure. We also demonstrate that the reconstruction based WENO
scheme with Roe solver is more accurate than all the versions of
the flux-splitting WENO solvers tested in this study. Performing
benchmark quality high-resolution computations, it is shown that
the Euler equations discretized by the fifth-order WENO scheme
with all the forms of splitting methods produce solutions which
convect vorticity and create small-scale vortical flow structures
which are usually associated with the high Reynolds number vis-
cous flows. These Kelvin–Helmholtz instability like vortical struc-
tures are not captured in any forms of the third-order WENO
schemes for the considered resolutions. Since the vorticity is
generated as a result of a discontinuity in the flow field, these
solutions can be considered valid and accurate solutions to the
Euler equations.
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