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ABSTRACT
Realistic wind data are essential in developing, testing, and ensuring the safety of unmanned aerial systems in operation. Alterna-
tives to Dryden and von Kármán turbulence models are required, aimed explicitly at urban air spaces to generate turbulent wind
data. We present a novel method to generate realistic wind data for the safe operation of small unmanned aerial vehicles in urban
spaces. We propose a non-intrusive reduced order modeling approach to replicate realistic wind data and predict wind fields. The
method uses a well-established large-eddy simulation model, the parallelized large eddy simulation model, to generate high-fidelity
data. To create a reduced-order model, we utilize proper orthogonal decomposition to extract modes from the three-dimensional space
and use specialized recurrent neural networks and long-term short memory for stepping in time. This paper combines the traditional
approach of using computational fluid dynamic simulations to generate wind data with deep learning and reduced-order modeling
techniques to devise a methodology for a non-intrusive data-based model for wind field prediction. A simplistic model of an isolated
urban subspace with a single building setup in neutral atmospheric conditions is considered a test case for the demonstration of the
method.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0098835

I. INTRODUCTION

Unmanned Aerial Systems (UAS) are an integral part of Urban
Air Mobility (UAM) to safely and efficiently carry out sched-
uled and on-demand, short, point-to-point transportation services
in low-altitude urban or metropolitan environments. It is also
a significant part of Advanced Air Mobility (AAM), an emerg-
ing concept for urban, rural, regional, and inter-regional trans-
portation using revolutionary new aircraft. In recent years, there
has been significant interest from industry and government agen-
cies in using aviation technologies like Unmanned Aerial Sys-
tems (UAS) to revolutionize our transportation capabilities. With
their diverse applications like law enforcement, general surveil-
lance, aerial structure inspection, disaster management,1 urban
mapping,2 and also door-to-door delivery and catering services,3

unmanned aerial systems have proved to be a worthy contender.
As the applications and requirements for these unmanned systems
grew, so did the complexity around them, necessitating the need
to augment with ground control stations (GCS), command and
communication links, on-demand trajectory planners, and other
auxiliary subsystems.4,5 Due to such complexity, exposure, and use
in myriad applications, these systems have now reached maturity
and technological know-how for implementing urban air mobil-
ity for next-generation state-of-the-art transportation capabilities in
cities.

For efficient use of available airspace in dense urban environ-
ments, significant weight and size restrictions have to be imposed
on the UAS, persuading the use of small Unmanned Aerial Systems
(sUAS). However, sUAS, due to their miniaturized physical dimen-
sions, are low-weight and are more susceptible to wind disturbances
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such as atmospheric turbulence and gusts. In the past decade, there
has been a significant focus in using sUAS for urban applications6,7
and mitigating urban field effects, such as heat islands.8,9 While
recently, researchers have investigated the influence of urban effects
on flight planning and trajectories10,11 to develop various control
strategies to minimize the effects, they face a significant challenge
for in situ development and testing their algorithms in the absence
of realistic wind data. Furthermore, with the advent of augmented
reality and virtual reality technologies, realistic wind data inclusion
is a key enabler in modeling simulation environments for UAS pilot
training.12

Turbulence models, such as Dryden13 and von Kármán,13 are
often used to generate gusty wind fields with predefined para-
meters in large unobstructed domains. However, they may not be
suitable for flow simulations of urban spaces since urban struc-
tures, such as buildings, create flow obstruction for the smaller
computational domains. While Reynolds-Averaged Navier–Stokes
(RANS) solutions have been used for computing flow fields in
urban spaces, they do not represent the unsteady nature of the flow
required for effectively devising various control and path-planning
algorithms.

On the other hand, Large Eddy Simulations (LESs) provide a
more realistic depiction of the flow field14,15 and enable the test-
ing and implementation of better control algorithms for UAS.16
However, the computational cost of LES limits the possibility of test-
ing at different flow scenarios in urban spaces.17 Hence, we need a
novel way of generating flow fields in urban spaces and testing for
real-time or close to real-time prediction and flight correction
strategies for the sUAS operation.

Data-driven, Reduced Order Models (ROMs) have been widely
adopted to efficiently reproduce and simulate fluid flow using avail-
able high-fidelity data from Computational Fluid Dynamics (CFD)
simulations. They have also been used in many diverse applica-
tions, such as process simulation and optimization,18 flow control,19
and fluid flows.20 With the advent of machine learning and deep
learning techniques, there has been wide-spread utilization of these
techniques for advancement in various fields of flow modeling and
its applications, such as modeling wind fields.21–27 In recent years,
many such machine learning/deep learning based models have been
successfully implemented for model order reduction in fluid flow
problems.28,29 Using traditional techniques, such as computational
fluid dynamics, researchers have been able to generate necessary data
to train such models non-intrusively.30,31 Non-Intrusive Reduced
Order Models (NIROMs) have not only been used for model reduc-
tion but also for hidden model recovery in cases where the physics
of the problem is not entirely known.32,33 Using techniques, such
as Proper Orthogonal Decomposition (POD) and Galerkin Projec-
tions (GPs) in conjunction with Machine Learning/Deep Learn-
ing (ML/DL) techniques,34,35 reduced-order models could be rela-
tively efficient and accurate while only utilizing a few underlying
features of the data for reconstructing the flow field. Access to
these ROMs with low-computational costs could enable wind-aware
in situ navigation and planning strategies, previously thought of as
impossible.

The current work is an attempt to use a machine learning-
based reduced-order modeling approach, specifically a Non-
Intrusive Reduced Order Model (NIROM) using proper orthogonal
decomposition and Long Short-Term Memory (LSTM) networks.31

We chose a simplistic domain with a single building for demon-
strating its utility in urban wind field prediction. This lets us test
the method as an effective alternative to generate more realis-
tic wind data using high-fidelity LES data. Furthermore, we also
attempt to predict the flow-field for all future time instances. Both
of the above capabilities let researchers devise more robust, wind-
aware algorithms and sub-systems for UAS operations in urban
spaces.

This paper is organized as follows: Sec. II contains the method-
ology adopted for both generating the data and creating theMachine
Learning based Reduced Order Model (ML-ROM). The large eddy
simulation setup, along with the governing equations, discretiza-
tion, and boundary condition treatment, is briefly discussed in
Subsection II A. Some brief details about the non-intrusive ROM-
LSTM method are described in Subsection II B. We present our
results from the NIROM-LSTM approach in Sec. III, which has
comparisons between predictions and actual data for the veloc-
ity field. We end the paper with general conclusions and remarks
in Sec. IV.

II. METHODOLOGY
In this section, we discuss the methodology for our approach

that uses large eddy simulation data and a non-intrusive reduced
order model using LSTM networks (ROM-LSTM) to predict the
flow field in a given domain of interest.

A. LES simulation setup
Large eddy simulation data are obtained using Parallelized

Large-Eddy Simulation Model (PALM).36 PALM is a turbulence-
resolving, large eddy simulation solver for atmospheric and
oceanic boundary-layer flows. The model is based on solving non-
hydrostatic, filtered, incompressible Navier–Stokes equations in
Boussinesq-approximated form on a Cartesian grid. Implicit sepa-
ration of sub-grid scales and resolved scales is achieved by averaging
the governing equations over discrete grid volumes as proposed by
Schumann.37

1. Governing equations
The model solves for six prognostic quantities, the velocity

components u, v,w, the potential temperature θ, specific humidity
qv, and the SGS turbulent kinetic energy e using Eqs. (1)-(8). The
potential temperature is defined as

Θ = T
Π

(1)

from absolute temperature T and the Exner function

Π = ( p
p0
)

Rd
Cp

, (2)

where p is the hydrostatic pressure, p0 is the reference pressure
1000 hPa, Rd is the gas constant for dry air, and CP is the specific
heat of dry air at constant pressure. Furthermore, a virtual potential
temperature could be calculated using the relation
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Θv = Θ[1 + (Rv

Rd
− 1)qv − ql], (3)

where Rv is the gas constant for water vapor and ql is the liq-
uid water-specific humidity calculated based on a chosen cloud
microphysics model. (Note: for the present study dry atmospheric
boundary conditions with neutral stratification are considered elimi-
nating the need for cloudmulti-physics and alsomaking the absolute
temperature, potential temperature, and virtual potential tempera-
ture the same value.) The governing equations for the conservation
of mass, momentum, energy, and moisture filtered over a Carte-
sian grid are expressed below in Einstein summation notation,
where angle brackets denote horizontal domain average, over-bar
indicates filtered quantities and double-prime indicates the SGS
variables

∂ui
∂t
= −∂uiuj

∂xj
− εijk f juk + εi3j f 3ug,j −

1
ρ0

∂Π∗

∂xi

+ g
Θv − ⟨Θv⟩
⟨Θv⟩

δi3 −
∂(u′′i u′′j − 2

3 eδij)
∂xj

, (4)

∂uj
∂xj
= 0, (5)

∂Θ
∂t
= −∂ujΘ

∂xj
−
∂(u′′j Θ′′)

∂xj
− Lv
CpΠ

Ψqv , (6)

∂qv
∂t
= −∂ujqv

∂xj
−
∂u′′j q′′v
∂xj

+Ψqv , (7)

where ui(i = 1, 2, 3) represents the components of velocities, fi is
the Coriolis parameter, Lv is latent heat of vaporization, g is the
gravitational acceleration, ug,k are the geostrophic wind compo-
nents, ρ0 is the density of dry air, p∗ is the perturbation pressure,
Π∗ = p∗ + 2/3ρ0e is the modified perturbation pressure, and SGS
TKE is represented by e.

2. Turbulence closure
The turbulence closure uses a prognostic Eq. (8) for the fil-

tered Sub-grid Scale Turbulent Kinetic energy (SGS-TKE) e. The
sub-grid scale terms are parameterized using 1.5 order closure by
closely following the works Deardorff38 and using a modified ver-
sion of Wyngaard et al.39 and Saiki et al.40 For further information

TABLE I. Details about the CFD domain used for LES.

CFD domain size Specification

Upstream (x-direction) 2H
Downstream (x-direction) 7H
Both lateral directions(y-direction) 2.5H
Above building (z-direction) 5H

ALGORITHM 1. ROM-LSTM approach.

1: Obtain 3D flow data from large eddy simulations data within the region of interest from the total CFD domain
2: Compute the mean and fluctuation flow fields for the given number of snapshots

u(x, y, z, tn) =
1
N

N
∑
n=1

u(x, y, z, tn)

u′(x, y, z, tn) = u(x, y, z, tn) − u(x, y, z, tn).

3: Compute the proper orthogonal decomposition basis for the data matrix A, where the columns have the domain data at each snapshot of
data using singular value decomposition

A = ΦΣV,

where Φ is the basis vectors matrix and Σ is a diagonal matrix with singular values.
4: Using relative information content (RIC) of the singular values, the optimal number of POD modes are selected and corresponding basis

vectors are stored.
5: Find the corresponding modal coefficients associated with basis vectors matrix Φw, obtained from the data matrix A,

C = ATΦw.

6: Pre-process the data by scaling and re-arranging data appropriately for LSTM neural network training with necessary look-back
window conditions.

7: Train the LSTM neural network with the training data.
8: Predict the modal coefficients with the trained network for future time instances.
9: Using the basis vectors stored calculate the fluctuation field from the modal coefficients predicted, U′,

U′ = ΦwCT.

10: Compute the predicted flow field by adding the mean value to the predicted snapshot data.
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FIG. 1. Left-top view (xy-plane); right-side view (xz-plane) of the domain; green—domain of interest, red—domain neglected from total domain, and LES domain—total
domain.

regarding the parameterization of various terms in the equation, the
reader is referred to Ref. 36,

∂e
∂t
= −uj

∂e
∂xj
− u′′i u′′j

∂ui
∂xj
+ g

Θv,0
u′′3 Θ′′v −

∂[u′′j (e +
p′′
ρ0
)]

∂xj
− ε, (8)

where ε is the SGS dissipation rate.

3. Discretization and buildings
a. Discretization. The calculation domain is discretized by

using equidistant finite-difference horizontal grid spacings in
x and y directions. PALM by default uses constant grid spacing
in the vertical or z-direction but allows an option for stretching
the grid to reduce computational cost when required. However, in
our application of simulating flow over a building, we only used
the default constant grid-spacing in all the directions. PALM uses
a C-grid topology called Arakawa41 staggered, which considers all
scalar variables, such as the perturbation pressure past, SGS-TKE
e, etc., to be located at the cell centers, while the components
of vector variables, such as velocity (u, v,w), are shifted by half
grid spacing to the corresponding face centers in the respective
directions.

b. Buildings. PALM can conduct realistic simulations of atmo-
spheric turbulence and its propagation, including the necessary
topography information in the domain. PALM’s 3D topography
implementation uses the mask method42 for resolving any obsta-
cles in the domain. The method resolves solid obstacles, such as
buildings, and treats the grid cell either as 100% fluid cell or 100%
solid cell, to create a 2.5D topography map similar to Digital Eleva-
tion Model (DEM). For the present study, we focused essentially on

TABLE II. Details about the domain used for ML-ROM.

ML-ROM domain size Specification

Upstream (x-direction) 2H
Downstream (x-direction) 3H
Both lateral directions (y-direction) 1.5H
Above building (z-direction) 1H

the neutral boundary layer and the obstacle surfaces are essentially
approximated by a step-like function by the grid. PALM model can
also treat over-hanging or detached structures in the newer versions
but can only account for stationary obstacles.

B. Non-intrusive ROM-LSTM methodology
Large-eddy simulation data are pre-processed to obtain the

necessary training data for the non-intrusive reduced order mod-
eling approach. We obtain the fluctuation data of the flow field
by subtracting the mean flow from the snapshot data at all the
time instances required. Proper orthogonal decomposition using
the singular value decomposition technique is used to compute the
modes and corresponding basis for the complete data. Based on
the threshold selected, the Relative Information Content43 (RIC)
index is used to decide on a cutoff mode. The modal coeffi-
cients until the cutoff mode are then used for training the neural
network.

Recurrent Neural Networks (RNNs) are a widely used neural
network architecture in time series prediction where the current
output state is dependent on data from previous time instances.
Recurrent Neural Networks (RNNs) contain cyclic or recurrent

FIG. 2. Modes and their relative information content; green-modes taken and red-
modes neglected.
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TABLE III. Neural network details.

Parameter Specification

Number of hidden layers 2
Number of neurons in each hidden layer 64
Activation function tanh
Look-back time-window 20
Recurrent dropout 0.2
Neuron dropout 0.2
Loss function MSE
Optimizer ADAM
Training-testing ratio 4:1

connections that enable them to continuously learn characteristics
and remember them. However, they suffer from vanishing gradi-
ents and suffer from long training time and can only predict short
sequences. Closely following,31 we use Long Short-Term Memory

(LSTM) neural networks, a special variant of RNN architecture bet-
ter suited for learning long-term dependencies in the input data
without suffering from the disadvantages associated with RNNs.
After sufficiently training the LSTM network, we use it to predict the
modal coefficients for future time instances. These predictions are
then used to project the modal coefficients using the pre-calculated
POD basis to the three-dimensional spatiotemporal domain in the
physical space. Using the obtained fluctuation flow field, we can
then compute the flow field using the mean flow data calculated in
the pre-processing stage. The detailed steps followed are depicted in
Algorithm 1.

III. RESULTS AND DISCUSSION
A. Simulation setup

For this study, we chose a simplistic setup of a single cubic
building (height and width were equal to each other) in a neutral

FIG. 3. u-velocity contour in the XZ plane at the center of domain for the first snapshot.

FIG. 4. u-velocity contour in the XY plane at the center of domain for the first snapshot.
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FIG. 5. Comparison between true and non-intrusive (ML) for first 8 modes; background colors: tan/orange—training; green—prediction.

FIG. 6. Comparison between true and non-intrusive (ML) for 9-16 modes; background colors: tan/orange—training; green—Prediction.
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FIG. 7. Comparison between true and
non-intrusive (ML) for 17-24 modes;
background colors: tan/orange—
training; green—prediction.

FIG. 8. Relative L2 error of the flow field
(normalized with the max error in training
phase), calculated between the recon-
structed data for the exact modes and
ML-ROM modes; background colors:
green—training phase; red—prediction
phase.

FIG. 9. Comparison between ML-ROM
and POD reconstructed values for mean
with their corresponding standard devia-
tion (μ − σ, μ + σ); background colors:
green—training; white—prediction.
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FIG. 10. u-velocity contour for xz plane at building span ratio of 1.0 at different instances.
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FIG. 11. u-velocity contour for xz plane at building span ratio of 0.5 (mid) at different instances.
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FIG. 12. u-velocity contour for xz plane at building span ratio of 0.0 at different instances.
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FIG. 13. u-velocity contour for the xy plane at midheight of the building.
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atmospheric boundary layer with a specified velocity profile at the
inlet of the domain. The large eddy simulation domain was chosen
based on closely following the recommendations of Franke et al.44
and Murakami and Mochida.45 Vertical profile of the inflow was
chosen proportional to z1/4 until a height of 2H,45 similar to the setup
of Tutar and Oguz.46 The wind velocity at height H was matched
to 8 m/s while using the vertical velocity profile z1/4. Only the
x-component of velocity u was initialized using the profile, while
other components v,w were set to be zeros. We used a constant grid
spacing of 1 m for the computational domain by following the best
practices for CFD simulations of wind flows around buildings.44,47
Further details about the domain is tabulated in Table I and pre-
sented in Fig. 1. Dry atmospheric conditions were chosen with a
Coriolis parameter of 7.3 × 10−5 with boundary conditions on the
top and bottom (z-direction) as free-slip and no-slip, left and right
(x-direction) as inflow and outflow, front and back (y-direction) as
outflows, respectively.

B. Non-intrusive ROM results
To simplify the model and demonstrate the method, the total

CFD domain used for the large eddy simulation is not used to build
the non-intrusive ROM. Instead, we pick a smaller sub-domain of
interest as depicted in Fig. 1 and described in Table II, in the prox-
imity to the building since this represents our region of interest.
The CFD simulation is run until a quasi-steady state or statisti-
cally, a stationary state is reached, before extracting the LES snap-
shot data for training the model. Furthermore, we model only the
x-component of velocity u using the non-intrusive ROM. The LES
data are obtained in this three-dimensional domain every 1 second,
which will be referred to as snapshot data going forward. Following
Algorithm 1, by picking a threshold of 80% based on the Relative
Information Content (RIC), we settle on 28 modes as shown in
Fig. 2. By making a comparison of the first snapshot data in the
center of the domain in both top-view (xz-plane) and side view
(xy-plane), as shown in Figs. 3 and 4, we notice that some finer
details of the flow are lost, but the major features still seem to be
well represented by these modes. The LSTM neural network com-
piled and trained on the data for 400 snapshots, and prediction is
made for the next 100 snapshots. Some more information about
the neural network architecture utilized for the study is listed in
Table III.

First the first 24 modes, a comparison is made between the true
modal coefficients and non-intrusive ROM predictions in Figs. 5–7.
We see a close agreement in the modal coefficient predictions and
the true modes obtained from the LES data. However, we still
notice a slight mismatch in the amplitudes for all modes. Since they
are arranged in the order of importance, this provides us with a
good measure of the flow-field predictions made. L2 norm error is
computed between the non-intrusive ROM data and the data recon-
structed from the modes and normalized with the peak error in the
training phase is plotted in Fig. 8. We could notice that the error
in the prediction phase is within close limits to that in the train-
ing phase and peaks only at about 1.2 times the highest training
error. We also compare the mean and standard deviation in Fig. 9
for the ML-ROM and POD reconstructed flow-fields in the domain
for the entire duration and see good agreement. Contour plots in xz
planes at different building span ratios and xy plane at the center

of the domain (top-view) are also plotted for comparison between
the predicted u-velocity field and the flow-field from reconstruction
using exact POD modes. Figure 10 represents the 2D flow field at
the beginning of the building in a span-wise direction, Fig. 11 rep-
resents the 2D flow field at the center, and Fig. 12 represents the 2D
flow field at the other end of the building. Additionally, the flow field
in the center of the domain when viewed from the top (xy-plane) is
depicted in Fig. 13. It could be noticed from these comparisons that
there seems to be amismatch between the finer structures in the con-
tour plot. However, they do tend to have similar larger structures in
the snapshots at 400, 450, and 500 s. As expected, the predictions
are better at the 400th snapshot and the flow-field predictions devi-
ate slowly as the number of the snapshot increases. However, we still
see a close resemblance between the predictions and the POD recon-
structed data. The mean with standard deviation values are plotted
in 9 and we see good agreement.

IV. CONCLUSION
In this work, we tried to build a machine learning based

non-intrusive reduced order model for predicting wind fields in a
simplistic urban setup case of a singular cubic building.We intended
to utilize an efficient, stable, and robust reduced order model and
hence use proper orthogonal decomposition-long short-term mem-
ory based ML-ROM to demonstrate the method for this problem.
We simplify the process for building the ML-ROM by choosing a
smaller domain of interest close to the building and also by pre-
dicting only the major component of velocity in the x-direction, u.
We see good agreement between the corresponding modal and
flow-field predictions obtained from the ML-ROM. However, we
do notice a deterioration in the predictions over time. While in
work predictions were only made for a short duration, for future
studies we intend to address longer predictions. We could uti-
lize convolutional neural networks based auto-encoders to replace
the proper orthogonal decomposition to generate a reduced order
model. This would be capable of understanding both the struc-
tures or terrain inside the domain and the velocity field, improving
predictions over a longer time duration. Furthermore, data assimi-
lation could be used to augment the data in the prediction phase to
address the deviations from actual data. However, this work pro-
vides only provides the preliminary framework and initial steps
for devising a ML-based ROM for wind-field predictions in urban
spaces.
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